IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp501-523.html
   My bibliography  Save this article

Investigation of new layout design concepts of an array-on-device WaveSub device

Author

Listed:
  • Faraggiana, E.
  • Chapman, J.C.
  • Williams, A.J.
  • Whitlam, C.
  • Masters, I.

Abstract

Wave Energy Converters (WECs) have not yet proven their competitiveness in the mainstream energy market. Research and development of this technology are necessary to find optimal solutions in terms both of energy produced and reduced cost. A WEC farm is expected to have reduced Levelized Cost of Energy (LCoE) compared to individual devices due to shared installation and grid connection costs. Studies show that energy yield of a WEC array is highly dependent on spacing and layout of the WECs. A method for selecting an optimal array layout is desirable.

Suggested Citation

  • Faraggiana, E. & Chapman, J.C. & Williams, A.J. & Whitlam, C. & Masters, I., 2022. "Investigation of new layout design concepts of an array-on-device WaveSub device," Renewable Energy, Elsevier, vol. 190(C), pages 501-523.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:501-523
    DOI: 10.1016/j.renene.2022.03.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pau Mercadé Ruiz & Vincenzo Nava & Mathew B. R. Topper & Pablo Ruiz Minguela & Francesco Ferri & Jens Peter Kofoed, 2017. "Layout Optimisation of Wave Energy Converter Arrays," Energies, MDPI, vol. 10(9), pages 1-17, August.
    2. Faraggiana, E. & Whitlam, C. & Chapman, J. & Hillis, A. & Roesner, J. & Hann, M. & Greaves, D. & Yu, Y.-H. & Ruehl, K. & Masters, I. & Foster, G. & Stockman, G., 2020. "Computational modelling and experimental tank testing of the multi float WaveSub under regular wave forcing," Renewable Energy, Elsevier, vol. 152(C), pages 892-909.
    3. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    2. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    3. Constantine Michailides & Eva Loukogeorgaki & Ioannis K. Chatjigeorgiou, 2020. "Wave Exciting Force Maximization of Truncated Cylinders in a Linear Array," Energies, MDPI, vol. 13(9), pages 1-19, May.
    4. Garcia-Teruel, Anna & DuPont, Bryony & Forehand, David I.M., 2021. "Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation," Applied Energy, Elsevier, vol. 298(C).
    5. Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
    6. Edwige Raissa Mache Kengne & Alain Soup Tewa Kammogne & Martin Siewe Siewe & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Mohamed Tounsi & Zafar Iqbal Khan, 2023. "Bifurcation Analysis of a Photovoltaic Power Source Interfacing a Current-Mode-Controlled Boost Converter with Limited Current Sensor Bandwidth for Maximum Power Point Tracking," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    7. Loukogeorgaki, Eva & Michailides, Constantine & Lavidas, George & Chatjigeorgiou, Ioannis K., 2021. "Layout optimization of heaving Wave Energy Converters linear arrays in front of a vertical wall," Renewable Energy, Elsevier, vol. 179(C), pages 189-203.
    8. Mandev, Murat Barış & Altunkaynak, Abdüsselam, 2022. "Advanced efficiency improvement of a sloping wall oscillating water column via a novel streamlined chamber design," Energy, Elsevier, vol. 259(C).
    9. Philip Balitsky & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Assessment of the Power Output of a Two-Array Clustered WEC Farm Using a BEM Solver Coupling and a Wave-Propagation Model," Energies, MDPI, vol. 11(11), pages 1-23, October.
    10. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Garcia-Teruel, Anna & Roberts, Owain & Noble, Donald R. & Henderson, Jillian Catherine & Jeffrey, Henry, 2022. "Design limits for wave energy converters based on the relationship of power and volume obtained through multi-objective optimisation," Renewable Energy, Elsevier, vol. 200(C), pages 492-504.
    12. Hillis, A.J. & Whitlam, C. & Brask, A. & Chapman, J. & Plummer, A.R., 2020. "Active control for multi-degree-of-freedom wave energy converters with load limiting," Renewable Energy, Elsevier, vol. 159(C), pages 1177-1187.
    13. Cotten, A. & Forehand, D.I.M., 2022. "Multi-objective optimisation of a sloped-motion, multibody wave energy converter concept," Renewable Energy, Elsevier, vol. 194(C), pages 307-320.
    14. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    15. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    16. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    17. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    18. In-Ho Kim & Byeong-Ryong Kim & Seon-Jun Jang, 2023. "Performance Validation of Resonant Wave Power Converter with Variable Moment of Inertia," Energies, MDPI, vol. 16(18), pages 1-13, September.
    19. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    20. Philip Balitsky & Nicolas Quartier & Gael Verao Fernandez & Vasiliki Stratigaki & Peter Troch, 2018. "Analyzing the Near-Field Effects and the Power Production of an Array of Heaving Cylindrical WECs and OSWECs Using a Coupled Hydrodynamic-PTO Model," Energies, MDPI, vol. 11(12), pages 1-32, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:501-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.