IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp355-364.html
   My bibliography  Save this article

Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis

Author

Listed:
  • Thoharudin,
  • Hsiau, Shu-San
  • Chen, Yi-Shun
  • Yang, Shouyin

Abstract

In this study, we developed an improved comprehensive pyrolysis scheme by modifying the bio-oil species and gas species fractions, increasing the carbon fraction in the char, and combining and changing the metaplastic decompositions for energy analysis. The two-fluid model (TFM) framework was used to simulate pyrolysis in a two-dimensional tubular reactor, and 10 g of 1500-μm-sized pinewood particles was used as biomass feedstock. Pyrolysis was performed at 400 °C−600 °C with an average heating rate of 115 °C/min. The improved scheme was evaluated against recent comprehensive pyrolysis schemes with respect to decomposition characteristics. The pyrolysis product yields and compositions predicted by the improved model accorded with experimental results. Moreover, the energy contents and distributions of pyrolysis products were successfully estimated, and the relative errors of bio-oil, gas, and char energies were 0.61%, 9.54%, and −3.76%, respectively. The energy distributions were more dominant influenced by the pyrolysis product yields than by the energy density.

Suggested Citation

  • Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2022. "Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis," Renewable Energy, Elsevier, vol. 181(C), pages 355-364.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:355-364
    DOI: 10.1016/j.renene.2021.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Xiaogang & Ronsse, Frederik & Roegiers, Jelle & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 1: Solids flow dynamics and back-mixing," Renewable Energy, Elsevier, vol. 143(C), pages 1465-1476.
    2. Wickramaarachchi, W.A.M.K.P. & Narayana, Mahinsasa, 2020. "Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling," Renewable Energy, Elsevier, vol. 146(C), pages 1153-1165.
    3. Xu, Bang & Argyle, Morris D. & Shi, Xiufeng & Goroncy, Alexander K. & Rony, Asif Hasan & Tan, Gang & Fan, Maohong, 2020. "Effects of mixture of CO2 /CH4 as pyrolysis atmosphere on pine wood pyrolysis products," Renewable Energy, Elsevier, vol. 162(C), pages 1243-1254.
    4. Park, Young-Kwon & Yoo, Myung Lang & Heo, Hyeon Su & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Seo, Seong-Gyu, 2012. "Wild reed of Suncheon Bay: Potential bio-energy source," Renewable Energy, Elsevier, vol. 42(C), pages 168-172.
    5. Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
    6. Makkawi, Yassir & Yu, Xi & Ocone, Raffaella, 2019. "Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 1225-1234.
    7. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Sia, Sheng Qiang & Wang, Wei-Cheng, 2020. "Numerical simulations of fluidized bed fast pyrolysis of biomass through computational fluid dynamics," Renewable Energy, Elsevier, vol. 155(C), pages 248-256.
    9. Zhong, Hanbin & Xiong, Qingang & Zhu, Yuqin & Liang, Shengrong & Zhang, Juntao & Niu, Ben & Zhang, Xinyu, 2019. "CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 236-245.
    10. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2023. "Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model," Energy, Elsevier, vol. 276(C).
    2. Song, Gongxiang & Huang, Dexin & Li, Hanjian & Wang, Xuepeng & Ren, Qiangqiang & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2022. "Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA," Energy, Elsevier, vol. 244(PB).
    3. Erić, Aleksandar & Cvetinović, Dejan & Milutinović, Nada & Škobalj, Predrag & Bakić, Vukman, 2022. "Combined parametric modelling of biomass devolatilisation process," Renewable Energy, Elsevier, vol. 193(C), pages 13-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitrii Glushkov & Galina Nyashina & Anatolii Shvets & Amaro Pereira & Anand Ramanathan, 2021. "Current Status of the Pyrolysis and Gasification Mechanism of Biomass," Energies, MDPI, vol. 14(22), pages 1-24, November.
    2. Stanisław Ledakowicz & Olexa Piddubniak, 2023. "Temperature Distribution in a Finite-Length Cylindrical Channel Filled with Biomass Transported by Electrically Heated Auger," Energies, MDPI, vol. 16(17), pages 1-23, August.
    3. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    4. Tao Chen & Xiaoke Ku & Jianzhong Lin & Henrik Ström, 2020. "CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme," Energies, MDPI, vol. 13(20), pages 1-19, October.
    5. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    6. Stanisław Ledakowicz & Olexa Piddubniak, 2022. "The Non-Stationary Heat Transport inside a Shafted Screw Conveyor Filled with Homogeneous Biomass Heated Electrically," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Rezapour, Mojtaba & Gholizadeh, Mohammad, 2021. "Analysis of methanol thermochemical reactor with volumetric solar heat flux based on Parabolic Trough Concentrator," Renewable Energy, Elsevier, vol. 180(C), pages 1088-1100.
    8. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    9. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    10. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    11. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    13. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    14. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    15. Singh, Piyush Pratap & Jaswal, Anurag & Nirmalkar, Neelkanth & Mondal, Tarak, 2023. "Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen pro," Renewable Energy, Elsevier, vol. 207(C), pages 575-587.
    16. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
    17. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    18. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    19. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    20. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:355-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.