IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp1325-1337.html
   My bibliography  Save this article

Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions

Author

Listed:
  • Meng, Haoran
  • Su, Hao
  • Guo, Jia
  • Qu, Timing
  • Lei, Liping

Abstract

In the present study, wind tunnel experiments were performed to investigate the power and thrust characteristics of a wind turbine model subjected to a variety of surge and sway motions. The turbine model was mounted on a translational stage to simulate the surge and sway motions at prescribed amplitudes and frequencies. The power output and rotor thrust were measured in each sets of the motion frequencies and amplitudes, respectively; and the measurements were also performed in a base-fixed turbine for comparison. Results show that the surge and sway motions with various amplitudes and frequencies all have slight impact on the mean power output and mean rotor thrust of a wind turbine. However, the rotor thrust fluctuations of the surging turbine, not only appeared significantly higher than those of the swaying turbine and base-fixed turbine at the same sets of amplitudes and frequencies, but also increased with the surge frequency and surge amplitude. Moreover, for both the surging and swaying turbine, the rotor thrust fluctuated with the same period as the surge and sway motions, respectively; and the power spectral density of the rotor thrust both exhibited a peak at the motion frequency and its odd multiple frequencies.

Suggested Citation

  • Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1325-1337
    DOI: 10.1016/j.renene.2021.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    2. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    3. Guo, Jia & Zeng, Pan & Lei, Liping, 2019. "Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments," Energy, Elsevier, vol. 174(C), pages 553-561.
    4. Micallef, Daniel & Sant, Tonio, 2015. "Loading effects on floating offshore horizontal axis wind turbines in surge motion," Renewable Energy, Elsevier, vol. 83(C), pages 737-748.
    5. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    6. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    7. Wen, Binrong & Dong, Xingjian & Tian, Xinliang & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2018. "The power performance of an offshore floating wind turbine in platform pitching motion," Energy, Elsevier, vol. 154(C), pages 508-521.
    8. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    9. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
    10. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Simos, Alexandre N. & Ruggeri, Felipe & Watai, Rafael A. & Souto-Iglesias, Antonio & Lopez-Pavon, Carlos, 2018. "Slow-drift of a floating wind turbine: An assessment of frequency-domain methods based on model tests," Renewable Energy, Elsevier, vol. 116(PA), pages 133-154.
    12. Sang, Le Quang & Takao, Maeda & Kamada, Yasunari & Li, Qing'an, 2017. "Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition," Energy, Elsevier, vol. 134(C), pages 269-278.
    13. Meng, Haoran & Ma, Zhe & Dou, Bingzheng & Zeng, Pan & Lei, Liping, 2020. "Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine," Energy, Elsevier, vol. 190(C).
    14. Tomasicchio, Giuseppe Roberto & D'Alessandro, Felice & Avossa, Alberto Maria & Riefolo, Luigia & Musci, Elena & Ricciardelli, Francesco & Vicinanza, Diego, 2018. "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 412-432.
    15. Chen, Jiahao & Hu, Zhiqiang & Liu, Geliang & Wan, Decheng, 2019. "Coupled aero-hydro-servo-elastic methods for floating wind turbines," Renewable Energy, Elsevier, vol. 130(C), pages 139-153.
    16. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    17. Talavera, Miguel & Shu, Fangjun, 2017. "Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel," Renewable Energy, Elsevier, vol. 109(C), pages 363-371.
    18. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming, 2017. "Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine," Energy, Elsevier, vol. 141(C), pages 2054-2068.
    19. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
    20. Sethuraman, Latha & Venugopal, Vengatesan, 2013. "Hydrodynamic response of a stepped-spar floating wind turbine: Numerical modelling and tank testing," Renewable Energy, Elsevier, vol. 52(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Zeng, Fanxu & Zhang, Ningchuan & Huang, Guoxing & Gu, Qian & He, Meng, 2023. "Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough," Energy, Elsevier, vol. 278(C).
    3. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    5. Arabgolarcheh, Alireza & Micallef, Daniel & Benini, Ernesto, 2023. "The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines," Energy, Elsevier, vol. 284(C).
    6. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    8. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    9. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    10. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    11. Chen, Ziwen & Wang, Xiaodong & Guo, Yize & Kang, Shun, 2021. "Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions," Renewable Energy, Elsevier, vol. 163(C), pages 1849-1870.
    12. Wen, Binrong & Tian, Xinliang & Zhang, Qi & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 1186-1199.
    13. Chen, Guang & Liang, Xi-Feng & Li, Xiao-Bai, 2022. "Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion," Energy, Elsevier, vol. 239(PB).
    14. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    15. Fu, Shifeng & Li, Zheng & Zhu, Weijun & Han, Xingxing & Liang, Xiaoling & Yang, Hua & Shen, Wenzhong, 2023. "Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion," Renewable Energy, Elsevier, vol. 205(C), pages 317-325.
    16. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    17. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    18. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    19. Arabgolarcheh, Alireza & Micallef, Daniel & Rezaeiha, Abdolrahim & Benini, Ernesto, 2023. "Modelling of two tandem floating offshore wind turbines using an actuator line model," Renewable Energy, Elsevier, vol. 216(C).
    20. Lerch, Markus & De-Prada-Gil, Mikel & Molins, Climent, 2019. "The influence of different wind and wave conditions on the energy yield and downtime of a Spar-buoy floating wind turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1325-1337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.