IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v17y1999i1p9-20.html
   My bibliography  Save this article

Reflected radiance distribution law for a 1000 kW thermal solar furnace system

Author

Listed:
  • Sammouda, H.
  • Royere, C.
  • Belghith, A.
  • Maalej, M.

Abstract

In this study, a theoretical and experimental analysis are presented in the aim to determine the reflected radiance distribution law (brightness) for paraboloid concentrator solar system. Among the characteristic parameters of this law, we consider the variation of the direct radiance of the solar disk, the variation of the apparent sun diameter, the atmospheric conditions and all the errors types or failures of the optic system. Here, we analyse the influence of these parameters on the energy power distribution in focal space. The experimental results, obtained in a 1000 kW thermal concentration system at Odeillo, are compared to the theoretical results in order to determine the optimal values of the characteristic parameters corresponding to such installation. In the aim to exhibit the utility of this analysis, the irradiance distribution in focal plane is presented for different positions of receiver surface and for different intensities of concentrated flux.

Suggested Citation

  • Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Reflected radiance distribution law for a 1000 kW thermal solar furnace system," Renewable Energy, Elsevier, vol. 17(1), pages 9-20.
  • Handle: RePEc:eee:renene:v:17:y:1999:i:1:p:9-20
    DOI: 10.1016/S0960-1481(98)00036-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198000366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00036-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonopoulos, K.A. & Vrachopoulos, M., 1995. "On the inverse transient heat-transfer problem in structural elements exposed to solar radiation," Renewable Energy, Elsevier, vol. 6(4), pages 381-397.
    2. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1994. "Effect of wind on the thermal performance of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 4(3), pages 333-337.
    3. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1993. "Heat losses from a paraboloid concentrator solar cooker: Experimental investigations on effect of reflector orientation," Renewable Energy, Elsevier, vol. 3(8), pages 871-876.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Hongbo & You, Shijun & Zhang, Huan, 2016. "Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors," Energy, Elsevier, vol. 96(C), pages 37-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Subodh & Kandpal, T.C. & Mullick, S.C., 1996. "Experimental test procedures for determination of the optical efficiency factor of a parabolloid concentrator solar cooker," Renewable Energy, Elsevier, vol. 7(2), pages 145-151.
    2. Purohit, Ishan, 2010. "Testing of solar cookers and evaluation of instrumentation error," Renewable Energy, Elsevier, vol. 35(9), pages 2053-2064.
    3. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: A financial appraisal," Renewable Energy, Elsevier, vol. 120(C), pages 501-511.
    4. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    5. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    6. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.
    7. Lahkar, Pranab J. & Samdarshi, S.K., 2010. "A review of the thermal performance parameters of box type solar cookers and identification of their correlations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1615-1621, August.
    8. Sammouda, H. & Royere, C. & Belghith, A. & Maalej, M., 1999. "Heat transfer in a rotating furnace of asolarsand-boiler at a 1000 kW thermal concentrationsystem," Renewable Energy, Elsevier, vol. 17(1), pages 21-47.
    9. Mariusz Owczarek, 2021. "Thermal Fluxes and Solar Energy Storage in a Massive Brick Wall in Natural Conditions," Energies, MDPI, vol. 14(23), pages 1-17, December.
    10. Edmonds, Ian, 2018. "Low cost realisation of a high temperature solar cooker," Renewable Energy, Elsevier, vol. 121(C), pages 94-101.
    11. Indora, Sunil & Kandpal, Tara C., 2019. "A framework for analyzing impact of potential financial/fiscal incentives for promoting institutional solar cooking in India," Renewable Energy, Elsevier, vol. 143(C), pages 1531-1543.
    12. Vrachopoulos, M.Gr. & Filios, A.E. & Fatsis, A. & Mavrommatis, S., 2008. "Determination of the thermal and cooling needs of the broader region of Athens," Renewable Energy, Elsevier, vol. 33(12), pages 2615-2622.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:17:y:1999:i:1:p:9-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.