IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp52-60.html
   My bibliography  Save this article

Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase

Author

Listed:
  • Pascual, Celia
  • Cantera, Sara
  • Muñoz, Raúl
  • Lebrero, Raquel

Abstract

Biogas contain minor concentration of volatile methyl siloxanes (VMS), responsible for severe damages in turbines or internal combustion engines. Sustainable biological processes for VMS abatement are limited by the low aqueous solubility of VMS. In order this limitation, the siloxanes (D4, D5, L2 and L3) removal performance of a two-phase partitioning biotrickling filter (TP-BTF) was study in terms of the empty bed residence time (EBRT) and the fraction of the organic phase (silicone oil). A decrease in the total VMS removal from 76 to 49% was observed when the EBRT was reduced from 60 to 15 min. The highest removals were achieved for D4 (53–84%) and D5 (69–87%), compared to the lower values recorded for L2 (19–45%) and L3 (31–81%). The increase in the share of silicone oil in the recycling mineral medium from 5 to 45% resulted in an improvement of the total VMS abatement from 35 to 52%. This enhancement was observed for L3 (21–50%), D4 (26–64%) and D5 (58–78%), whereas L2 removals remained < 25%. A highly specialized bacterial community dominated by the genus KCM-B-112 was retrieved at the end of the experiment.

Suggested Citation

  • Pascual, Celia & Cantera, Sara & Muñoz, Raúl & Lebrero, Raquel, 2021. "Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase," Renewable Energy, Elsevier, vol. 177(C), pages 52-60.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:52-60
    DOI: 10.1016/j.renene.2021.05.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. MosayebNezhad, M. & Mehr, A.S. & Lanzini, A. & Misul, D. & Santarelli, M., 2019. "Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine," Renewable Energy, Elsevier, vol. 140(C), pages 407-418.
    3. de Arespacochaga, N. & Valderrama, C. & Raich-Montiu, J. & Crest, M. & Mehta, S. & Cortina, J.L., 2015. "Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 366-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Marco Osvaldo Vigueras-Zúñiga & Carlos Augusto Ramírez-Ruíz & Agustín L. Herrera-May & María Elena Tejeda-del-Cueto, 2021. "Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor," Energies, MDPI, vol. 14(10), pages 1-21, May.
    3. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    4. Md Muzammel Hossain & Yuan Yuan & Hengliang Huang & Ziwei Wang & Mohammad Abdul Baki & Zhihua Dai & Muhammad Rizwan & Shuanglian Xiong & Menghua Cao & Shuxin Tu, 2021. "Exposure to Dodecamethylcyclohexasiloxane (D6) Affects the Antioxidant Response and Gene Expression of Procambarus clarkii," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    5. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    7. Ruan, Pengcheng & Huang, Diangui, 2023. "Study of aerodynamic performance of built-in variable wavelength traveling wave turbine," Renewable Energy, Elsevier, vol. 205(C), pages 918-928.
    8. Khoshgoftar Manesh, M.H. & Rezazadeh, A. & Kabiri, S., 2020. "A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran," Renewable Energy, Elsevier, vol. 159(C), pages 87-106.
    9. Yanara Alessandra Santana Moura & Daniela de Araújo Viana-Marques & Ana Lúcia Figueiredo Porto & Raquel Pedrosa Bezerra & Attilio Converti, 2020. "Pigments Production, Growth Kinetics, and Bioenergetic Patterns in Dunaliella tertiolecta (Chlorophyta) in Response to Different Culture Media," Energies, MDPI, vol. 13(20), pages 1-19, October.
    10. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    12. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    14. Xiaoliang Luo & Bincheng Zhao & Mingguo Peng & Rongyan Shen & Linqiang Mao & Wenyi Zhang, 2022. "Effects of Inorganic Passivators on Gas Production and Heavy Metal Passivation Performance during Anaerobic Digestion of Pig Manure and Corn Straw," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    15. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    16. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    17. Igor Hudák & Pavel Skryja & Jiří Bojanovský & Zdeněk Jegla & Martin Krňávek, 2021. "The Effect of Inert Fuel Compounds on Flame Characteristics," Energies, MDPI, vol. 15(1), pages 1-18, December.
    18. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    20. Amit Kumar Sharma & Pradeepta Kumar Sahoo & Mainak Mukherjee & Alok Patel, 2022. "Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:52-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.