IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v176y2021icp475-493.html
   My bibliography  Save this article

A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir

Author

Listed:
  • Aliyu, Musa D.
  • Archer, Rosalind A.

Abstract

With sufficient data and the appropriate modelling tools, it is possible to replicate the real-life behaviour of geothermal systems. Modelling tools could guide geologists, engineers and decision-makers in developing an optimal design for these systems. In order to explore the effectiveness of the modelling techniques, this paper presents a new three-dimensional (3D) numerical model of a hot dry rock (HDR) geothermal reservoir using coupled thermo-hydro-mechanical (THM) processes. The model is implemented in the COMSOL Multiphysics Finite Element (FE) solver, and its reliability is confirmed by conducting a validation study using field measurements from the Fenton Hill Phase I HDR system in New Mexico. After confirming the model's reliability, two case studies are analysed to determine the different factors affecting reservoir performance during exploitation. The factors analysed for the two cases are wellbore alignment and placement, using single and multiple planar fracture HDR system configurations. The results show that wellbore alignment does not affect changes in fracture properties and reservoir productivity. Wellbore placement, however, is found to affect reservoir performance significantly. The simulation analysis performed shows that knowledge of injection/production wellbore placement could be a significant asset to reservoir engineers/managers during the planning, exploration, design, and exploitation stages.

Suggested Citation

  • Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
  • Handle: RePEc:eee:renene:v:176:y:2021:i:c:p:475-493
    DOI: 10.1016/j.renene.2021.05.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    2. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    3. Davis, Adelina P. & Michaelides, Efstathios E., 2009. "Geothermal power production from abandoned oil wells," Energy, Elsevier, vol. 34(7), pages 866-872.
    4. Xu, Haoran & Cheng, Jingru & Zhao, Zhihong & Lin, Tianyi & Liu, Guihong & Chen, Sicong, 2021. "Coupled thermo-hydro-mechanical-chemical modeling on acid fracturing in carbonatite geothermal reservoirs containing a heterogeneous fracture," Renewable Energy, Elsevier, vol. 172(C), pages 145-157.
    5. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    6. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    7. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Hai & Li, Chengying & Chen, Xiangjun & Liu, Xu & Guo, Ruichang & Liu, Ying, 2023. "LN cooling on mechanical properties and fracture characteristics of hot dry granites involving ANN prediction," Renewable Energy, Elsevier, vol. 216(C).
    2. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    3. Aliyu, Musa D. & Finkbeiner, Thomas & Chen, Hua-Peng & Archer, Rosalind A., 2023. "A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir," Energy, Elsevier, vol. 262(PA).
    4. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    5. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    2. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    3. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    4. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    5. Ma, Yueqiang & Zhang, Yanjun & Hu, Zhongjun & Yu, Ziwang & Zhou, Ling & Huang, Yibin, 2020. "Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures," Renewable Energy, Elsevier, vol. 153(C), pages 93-107.
    6. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    7. Aliyu, Musa D. & Finkbeiner, Thomas & Chen, Hua-Peng & Archer, Rosalind A., 2023. "A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir," Energy, Elsevier, vol. 262(PA).
    8. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    9. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    10. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    11. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    12. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    13. Zhai, Haizhen & Jin, Guangrong & Liu, Lihua & Su, Zheng & Zeng, Yuchao & Liu, Jie & Li, Guangyu & Feng, Chuangji & Wu, Nengyou, 2023. "Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin," Energy, Elsevier, vol. 275(C).
    14. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    15. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    16. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    17. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    18. Yu, Ziwang & Ye, Xiaoqi & Zhang, Yanjun & Gao, Ping & Huang, Yibin, 2023. "Experimental research on the thermal conductivity of unsaturated rocks in geothermal engineering," Energy, Elsevier, vol. 282(C).
    19. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    20. Al Saedi, A.Q. & Sharma, P. & Kabir, C.S., 2021. "A novel cyclical wellbore-fluid circulation strategy for extracting geothermal energy," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:176:y:2021:i:c:p:475-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.