IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp498-511.html
   My bibliography  Save this article

Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass

Author

Listed:
  • Kuznetsov, G.V.
  • Syrodoy, S.V.
  • Nigay, N.A.
  • Maksimov, V.I.
  • Gutareva, N.Yu.

Abstract

The article presents the results of the experimental studies of heat transfer in a layer of moist wood biomass under conditions of its dehydration when heated in a high-temperature gas environment.

Suggested Citation

  • Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:498-511
    DOI: 10.1016/j.renene.2020.12.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Meng, Fanbin & Wang, Donghai, 2020. "Effects of vacuum freeze drying pretreatment on biomass and biochar properties," Renewable Energy, Elsevier, vol. 155(C), pages 1-9.
    3. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    4. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
    5. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    6. Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
    7. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    8. Chen, Wei-Hsin & Kuo, Po-Chih, 2011. "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass," Energy, Elsevier, vol. 36(2), pages 803-811.
    9. Dogan, Eyup & Inglesi-Lotz, Roula, 2017. "Analyzing the effects of real income and biomass energy consumption on carbon dioxide (CO2) emissions: Empirical evidence from the panel of biomass-consuming countries," Energy, Elsevier, vol. 138(C), pages 721-727.
    10. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    11. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
    12. Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), 2010. "Handbook of Bioenergy Economics and Policy," Natural Resource Management and Policy, Springer, number 978-1-4419-0369-3, December.
    13. Verma, Munna & Loha, Chanchal & Sinha, Amar Nath & Chatterjee, Pradip Kumar, 2017. "Drying of biomass for utilising in co-firing with coal and its impact on environment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 732-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syrodoy, S.V. & Kuznetsov, G.V. & Nigay, N.A. & Purin, M.V. & Kostoreva, Zh.A., 2023. "The effect of compaction of the dispersed wood biomass layer on its drying efficiency," Renewable Energy, Elsevier, vol. 211(C), pages 64-75.
    2. Kuznetsov, G.V. & Nigay, N.A. & Syrodoy, S.V. & Gutareva, N. Yu & Malyshev, D. Yu, 2022. "A comparative analysis of the characteristics of the water removal processes in preparation for incineration of typical wood waste and forest combustible materials," Energy, Elsevier, vol. 239(PE).
    3. Weronika Tulej & Szymon Głowacki & Andrzej Bryś & Mariusz Sojak & Piotr Wichowski & Krzysztof Górnicki, 2021. "Research on Determination of Water Diffusion Coefficient in Single Particles of Wood Biomass Dried Using Convective Drying Method," Energies, MDPI, vol. 14(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    2. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    3. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    6. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Jorge Miguel Carneiro Ribeiro & Radu Godina & João Carlos de Oliveira Matias & Leonel Jorge Ribeiro Nunes, 2018. "Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    8. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    9. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    10. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    11. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "A review on torrefied biomass pellets as a sustainable alternative to coal in power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 153-160.
    12. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
    13. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    14. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
    15. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    16. Zhihao Shang & Quan Wen & Yanhua Chen & Bing Zhou & Mingliang Xu, 2022. "Wind Speed Forecasting Using Attention-Based Causal Convolutional Network and Wind Energy Conversion," Energies, MDPI, vol. 15(8), pages 1-23, April.
    17. Schwerz, Felipe & Neto, Durval Dourado & Caron, Braulio Otomar & Nardini, Claiton & Sgarbossa, Jaqueline & Eloy, Elder & Behling, Alexandre & Elli, Elvis Felipe & Reichardt, Klaus, 2020. "Biomass and potential energy yield of perennial woody energy crops under reduced planting spacing," Renewable Energy, Elsevier, vol. 153(C), pages 1238-1250.
    18. Jiang, Zheyong & Che, Jinxing & He, Mingjun & Yuan, Fang, 2023. "A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition," Renewable Energy, Elsevier, vol. 203(C), pages 802-827.
    19. Song, Shizhong & Liu, Pei & Xu, Jing & Chong, Chinhao & Huang, Xianzheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2017. "Life cycle assessment and economic evaluation of pellet fuel from corn straw in China: A case study in Jilin Province," Energy, Elsevier, vol. 130(C), pages 373-381.
    20. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:498-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.