IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp800-810.html
   My bibliography  Save this article

Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons

Author

Listed:
  • Ratso, Sander
  • Zitolo, Andrea
  • Käärik, Maike
  • Merisalu, Maido
  • Kikas, Arvo
  • Kisand, Vambola
  • Rähn, Mihkel
  • Paiste, Päärn
  • Leis, Jaan
  • Sammelselg, Väino
  • Holdcroft, Steven
  • Jaouen, Frédéric
  • Tammeveski, Kaido

Abstract

Iron and nitrogen doping of carbon materials is one of the promising pathways towards replacing Pt/C in polymer electrolyte fuel cell cathodes. Here, we show a synthesis method to produce highly active non-precious metal catalysts and study the effect of synthesis parameters on the oxygen reduction reaction (ORR) activity in high-pH conditions. The electrocatalysts are prepared by functionalizing silicon carbide-derived carbon (SiCDC) with 1,10-phenanthroline, iron(II)acetate and, optionally polyvinylpyrrolidone, by ball-milling with ZrO2 in dry or wet conditions, followed by pyrolysis at 800 °C. The catalysts are characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, N2 physisorption and inductively coupled plasma mass spectrometry. By optimizing the ball-milling conditions, we achieved a reduction in the size of SiCDC grains from >1 μm to 200 nm without negatively affecting the high BET area of catalysts derived from SiCDC. This resulted in increased ORR activity in both rotating disk electrode and anion exchange membrane fuel cell (AEMFC) environments, and improved mass-transport properties of the cathode layer in fuel cell. The ORR activity at 0.9 V in AEMFC of the optimized iron and nitrogen-doped SiCDC reaches 52 mA cm−2, exceeding that of a Pt/C cathode at 36.5 mA cm−2.

Suggested Citation

  • Ratso, Sander & Zitolo, Andrea & Käärik, Maike & Merisalu, Maido & Kikas, Arvo & Kisand, Vambola & Rähn, Mihkel & Paiste, Päärn & Leis, Jaan & Sammelselg, Väino & Holdcroft, Steven & Jaouen, Frédéric , 2021. "Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons," Renewable Energy, Elsevier, vol. 167(C), pages 800-810.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:800-810
    DOI: 10.1016/j.renene.2020.11.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120319182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Wang & Yao Yang & Shuangfeng Jia & Xiaoming Wang & Kangjie Lyu & Yanqiu Peng & He Zheng & Xing Wei & Huan Ren & Li Xiao & Jianbo Wang & David A. Muller & Héctor D. Abruña & Bing Joe Hwang & Junta, 2019. "Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Kara Strickland & Elise Miner & Qingying Jia & Urszula Tylus & Nagappan Ramaswamy & Wentao Liang & Moulay-Tahar Sougrati & Frédéric Jaouen & Sanjeev Mukerjee, 2015. "Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shicheng & Wu, Wanlong & Wan, Ruiying & Wei, Wei & Li, Yujiao & Wang, Jin & Sun, Xiaoqi & He, Ronghuan, 2022. "Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes," Renewable Energy, Elsevier, vol. 194(C), pages 366-377.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    4. Yaqoob, Lubna & Noor, Tayyaba & Iqbal, Naseem & Nasir, Habib & Sohail, Manzar & Zaman, Neelam & Usman, Muhammad, 2020. "Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER)," Renewable Energy, Elsevier, vol. 156(C), pages 1040-1054.
    5. Xin Wan & Qingtao Liu & Jieyuan Liu & Shiyuan Liu & Xiaofang Liu & Lirong Zheng & Jiaxiang Shang & Ronghai Yu & Jianglan Shui, 2022. "Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:800-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.