IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp42-55.html
   My bibliography  Save this article

Influence of microalgae on synergism during co-pyrolysis with organic waste biomass: A thermogravimetric and kinetic analysis

Author

Listed:
  • Vuppaladadiyam, Arun K.
  • Antunes, Elsa
  • Sanchez, Paula Blanco
  • Duan, Hubao
  • Zhao, Ming

Abstract

The synergistic influence of microalgae on the two forms of organic waste biomasses, namely biomass wastes (BW) and its digested form (DBW), during co-pyrolysis was evaluated based on the thermal decomposition behaviour, gas yields, extent of thermal decomposition and reaction kinetics. The biomasses and their blends were co-pyrolysed at three different heating rates (10, 15 and 20 °C min−1) in a thermogravimetric analyzer coupled with a mass spectrometer. Initial assessment, based on TG-DTG data, revealed that the thermal degradation can be divided into three zones (50-150 °C, 150-550 °C and 550-800 °C) for all the biomasses and their blends. The thermogravimetric data was used to evaluate the kinetic triplet, which include apparent activation energy (Eα), pre-exponential factor (A) and reaction mechanism, f(α). Semi-quantitative method was used to quantify the gas species, H2, CO2 and CO were dominant species, implying the water gas reactions and oxidation reactions were predominant. The synergistic influence of microalgae was clearly evident in terms of reaction kinetics, as noted in the reduction in the apparent activation energy and increase in the total gas yields. The obtained kinetic triplet and thermodynamic parameters are expected to facilitate the design and optimization of co-pyrolysis of microalgae with other forms of organic wastes.

Suggested Citation

  • Vuppaladadiyam, Arun K. & Antunes, Elsa & Sanchez, Paula Blanco & Duan, Hubao & Zhao, Ming, 2021. "Influence of microalgae on synergism during co-pyrolysis with organic waste biomass: A thermogravimetric and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 42-55.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:42-55
    DOI: 10.1016/j.renene.2020.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    3. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linards Goldšteins & Māris Gunārs Dzenis & Viesturs Šints & Raimonds Valdmanis & Maija Zaķe & Alexandr Arshanitsa, 2022. "Microwave Pre-Treatment and Blending of Biomass Pellets for Sustainable Use of Local Energy Resources in Energy Production," Energies, MDPI, vol. 15(9), pages 1-21, May.
    2. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    3. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    4. Kumar, Akash & Yan, Beibei & Tao, Junyu & Li, Jian & Kumari, Lata & Oba, Belay Tafa & Aborisade, Moses Akintayo & Chen, Guanyi, 2022. "Influence of waste plastic on pyrolysis of low-lipid microalgae: A study on thermokinetics, behaviors, evolved gas characteristics, and products distribution," Renewable Energy, Elsevier, vol. 185(C), pages 416-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    3. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    4. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    5. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    6. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    7. Zaffar Ahmed Shaikh & Polina Datsyuk & Laura M. Baitenova & Larisa Belinskaja & Natalia Ivolgina & Gulmira Rysmakhanova & Tomonobu Senjyu, 2022. "Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    8. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    9. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    10. Min Wang & Xiaobin Dong & Youchun Zhai, 2021. "Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage," Energies, MDPI, vol. 14(21), pages 1-12, October.
    11. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    12. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    14. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    15. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    17. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Satar, Ibdal & Daud, Wan Ramli Wan & Kim, Byung Hong & Somalu, Mahendra Rao & Ghasemi, Mostafa, 2017. "Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose," Energy, Elsevier, vol. 139(C), pages 1188-1196.
    19. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    20. Gilbert Fridgen & Marc-Fabian Körner & Steffen Walters & Martin Weibelzahl, 2021. "Not All Doom and Gloom: How Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 243-256, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:42-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.