IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1334-1349.html
   My bibliography  Save this article

Directional wind energy assessment of China based on nonparametric copula models

Author

Listed:
  • Han, Qinkai
  • Chu, Fulei

Abstract

The joint probabilistic density functions (JPDF) of wind speed and direction are important prerequisites for directional wind energy assessment (DWEA). Based on the beta boundary kernel and the optimal bandwidth algorithm in the R programs, a nonparametric copula model (NP-copula) for the JPDF of wind vector data is proposed for DWEA in China. Eight parametric models, including five parametric copula models, two angle-linear (AL) models, and the anisotropic Gaussian model, are introduced for comparison. The three-year daily-average wind vector forecast data of mainland China (total 6019 nodes) is adopted for comparisons at the regional scale. The comprehensive metric value reaches 4.9669 (full score 5), indicating that the NP-copula model has the superior performance in fitting JPDF of wind vector data. Subsequently, the DWEA for China, including the estimations of direction-related wind power density (WPD) and wind turbine power output (WTPO), is carried out using the proposed NP-copula model. The estimated values of WPD and WTPO have good consistency with the reference values, indicating that the DWEA based on the NP-copula model is reliable. It is found that the regions with the most abundant wind resources are concentrated at the southeast coastal region, some western provinces, and the central and eastern regions of Inner Mongolia. The average values of WPD and WTPO could reach (or exceed) 240 and 5 GWh, respectively. Besides the average values, the direction-related WPD and WTPO are also identified based on the NP-copula model. For example, the wind resources at the southeast coastal region are concentrated at the S and SW directions. For the southern Xinjiang and western Gansu provinces, wind resources with SW and W directions are dominant. These results might be useful for the wind farm site selection, as well as the design and condition monitoring of wind turbine systems in China.

Suggested Citation

  • Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1334-1349
    DOI: 10.1016/j.renene.2020.10.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
    2. Lee, Yongwoong & Yang, Kisung, 2019. "Modeling diversification and spillovers of loan portfolios' losses by LHP approximation and copula," International Review of Financial Analysis, Elsevier, vol. 66(C).
    3. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2018. "Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain," Renewable Energy, Elsevier, vol. 126(C), pages 640-651.
    4. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2013. "A Multivariate and Multimodal Wind Distribution model," Renewable Energy, Elsevier, vol. 51(C), pages 436-447.
    6. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    7. Gozgor, Giray & Tiwari, Aviral Kumar & Khraief, Naceur & Shahbaz, Muhammad, 2019. "Dependence structure between business cycles and CO2 emissions in the U.S.: Evidence from the time-varying Markov-Switching Copula models," Energy, Elsevier, vol. 188(C).
    8. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    9. Miao, Shuwei & Yang, Hejun & Gu, Yingzhong, 2018. "A wind vector simulation model and its application to adequacy assessment," Energy, Elsevier, vol. 148(C), pages 324-340.
    10. Böhme, Gustavo S. & Fadigas, Eliane A. & Gimenes, André L.V. & Tassinari, Carlos E.M., 2018. "Wake effect measurement in complex terrain - A case study in Brazilian wind farms," Energy, Elsevier, vol. 161(C), pages 277-283.
    11. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    12. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    14. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    15. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    16. Song, Mengxuan & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction," Renewable Energy, Elsevier, vol. 85(C), pages 57-65.
    17. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Misbah Abdelrahim & Gamal Alkawsi & Ammar Ahmed Alkahtani & Ali M. W. Alhasan & Mohammad Khudari & Mohd Rizuan Abdul Kadir & Janaka Ekanayake & Sieh Kiong Tiong, 2022. "Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia," Energies, MDPI, vol. 15(15), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    3. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    5. Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    6. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
    7. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    8. Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
    10. Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
    11. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    12. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    13. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    14. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    15. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    16. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    17. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    18. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    19. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    20. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1334-1349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.