IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1182-1194.html
   My bibliography  Save this article

GIS bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria

Author

Listed:
  • Chukwuma, Emmanuel Chibundo
  • Okey-Onyesolu, Faith Chinenye
  • Ani, Kingsley Amaechi
  • Nwanna, Emmanuel Chukwudi

Abstract

Environmental concerns have increased over environmental hazards associated with fossil energy source, transition to renewable energy sources have been emphasized, this however requires relevant data for informed decision making. Critical analytical methods in situating bioenergy plants for bioenergy production are advantageous from environmental, economic and sustainable perspectives. A study therefore was undertaken to provide relevant data on biogas renewable energy source using Anambra State of Nigeria as a case study. The study was carried out using the power of Geographical Information System (GIS) technology. Several GIS thematic layers were obtained considering important factors in bioenergy plant location analysis. GIS-based thematic maps used for the production of the suitability map include political boundary map layer, road network layer, Land Use and Land Cover (LULC) layer, Digital Elevation Map (DEM) layer, river layer, slope layer, electric transmission line network layer, biomass potential density layer etc. Considering the fact that bioenergy plant is dependent on heat energy source which is also abundant in the tropics, hill-shade layer was integrated into the GIS location suitability analysis. Various economic and socio-environmental factors were considered and utilized in the development of economic, land suitability and bio-resource spatial density maps. These thematic maps were overlaid to obtain the final suitability map index. The most suitable sites identified were located in Njikoka, Onitsha North and Dunukofia Local Government Areas (L.G.As) of the Study area. The annual cumulative bio-wastes generated from the three LGA are 9,133,220 kg, 3,992,735 kg, and 6,909,450 kg respectively. It is recommended that government and stake-holders should take this study as a veritable tool in green energy technology implementation plan.

Suggested Citation

  • Chukwuma, Emmanuel Chibundo & Okey-Onyesolu, Faith Chinenye & Ani, Kingsley Amaechi & Nwanna, Emmanuel Chukwudi, 2021. "GIS bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria," Renewable Energy, Elsevier, vol. 163(C), pages 1182-1194.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1182-1194
    DOI: 10.1016/j.renene.2020.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031466X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    2. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    3. Huiping Huang & Qiangzi Li & Yuan Zhang, 2019. "Urban Residential Land Suitability Analysis Combining Remote Sensing and Social Sensing Data: A Case Study in Beijing, China," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    4. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    5. Chukwuma, E.C, 2019. "Facility location allocation modelling for bio-energy system in Anambra State of Nigeria: Integration of GIS and location model," Renewable Energy, Elsevier, vol. 141(C), pages 460-467.
    6. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    7. Zhixue Liu & Shukun Wang & Yanfeng Ouyang, 2017. "Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions," Energies, MDPI, vol. 10(11), pages 1-18, November.
    8. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H. & Ashok, Veilumuthu, 2013. "A GIS (geographical information system)-based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur distric," Energy, Elsevier, vol. 52(C), pages 77-88.
    9. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    10. Masayasu Asai & Takashi Hayashi & Mitasu Yamamoto, 2019. "Mental Model Analysis of Biogas Energy Perceptions and Policy Reveals Potential Constraints in a Japanese Farm Community," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).
    2. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Zhao & Xiaoya Ma & Kun Wang & Yuqing Long & Dongjie Zhang & Zhanchun Xiao, 2017. "A Spatially Explicit Optimization Model for Agricultural Straw-Based Power Plant Site Selection: A Case Study in Hubei Province, China," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    2. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Arnò, Paolo & Fiore, Silvia & Verda, Vittorio, 2017. "Assessment of anaerobic co-digestion in areas with heterogeneous waste production densities," Energy, Elsevier, vol. 122(C), pages 221-236.
    4. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    5. Mikkel Bojesen & Luc Boerboom & Hans Skov-Petersen, 2014. "Towards a sustainable capacity expansion of the Danish biogas sector," IFRO Working Paper 2014/03, University of Copenhagen, Department of Food and Resource Economics.
    6. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    7. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    8. Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
    9. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    10. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.
    11. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    12. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2020. "An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale," Applied Energy, Elsevier, vol. 260(C).
    13. Chukwuma, E.C, 2019. "Facility location allocation modelling for bio-energy system in Anambra State of Nigeria: Integration of GIS and location model," Renewable Energy, Elsevier, vol. 141(C), pages 460-467.
    14. Piradee Jusakulvijit & Alberto Bezama & Daniela Thrän, 2022. "An Integrated Assessment of GIS-MCA with Logistics Analysis for an Assessment of a Potential Decentralized Bioethanol Production System Using Distributed Agricultural Residues in Thailand," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    15. Durusut, Emrah & Tahir, Foaad & Foster, Sam & Dineen, Denis & Clancy, Matthew, 2018. "BioHEAT: A policy decision support tool in Ireland’s bioenergy and heat sectors," Applied Energy, Elsevier, vol. 213(C), pages 306-321.
    16. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    17. Shafiullah, Md & Rahman, Syed Masiur & Mortoja, Md. Golam & Al-Ramadan, Baqer, 2016. "Role of spatial analysis technology in power system industry: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 584-595.
    18. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    19. Tomaž Levstek & Črtomir Rozman, 2022. "A Model for Finding a Suitable Location for a Micro Biogas Plant Using Gis Tools," Energies, MDPI, vol. 15(20), pages 1-21, October.
    20. Mattias, Gaglio & Elena, Tamburini & Giuseppe, Castaldelli & Anna, Fano Elisa, 2021. "Modeling the ecosystem service of agricultural residues provision for bioenergy production: A potential application in the Emilia-Romagna region (Italy)," Ecological Modelling, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1182-1194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.