IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp777-791.html
   My bibliography  Save this article

Nonlinear model predictive pitch control of aero-elastic wind turbine blades

Author

Listed:
  • El-Baklish, Shaimaa K.
  • El-Badawy, Ayman A.
  • Frison, Gianluca
  • Diehl, Moritz

Abstract

This paper proposes a Nonlinear Model Predictive Controller (NMPC) for pitch control of Horizontal-Axis Wind Turbines (HAWTs) in Region 3 to avoid flutter aero-elastic instability. First, an aero-elastic HAWT rotor model was derived based on extended Hamilton’s principle using the coupled flap-wise and torsional motions of each blade. As for the aerodynamic loading, expressions for lift and pitching moment are obtained based on modifications of Theodorsen’s fixed wing strip theory for a rotating HAWT blade. The model is spatially discretized using the Assumed Modes Method with the first three flap-wise and two torsional mode shapes for the fixed cantilevered blade under free loading. This was applied to the 5-MW NREL (National Renewable Energy Laboratory) reference HAWT. The time-domain response under aerodynamic loading of the developed model was compared to FAST (Fatigue, Aerodynamics, Structure and Turbulence) aero-servo-elastic HAWT simulator. Then, an NMPC pitch controller was designed using the developed model for prediction. This was compared to another NMPC pitch controller which used a lumped-mass drive-train model as a prediction model and to the baseline gain-scheduled PI pitch controller.

Suggested Citation

  • El-Baklish, Shaimaa K. & El-Badawy, Ayman A. & Frison, Gianluca & Diehl, Moritz, 2020. "Nonlinear model predictive pitch control of aero-elastic wind turbine blades," Renewable Energy, Elsevier, vol. 161(C), pages 777-791.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:777-791
    DOI: 10.1016/j.renene.2020.07.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lasheen, Ahmed & Elshafei, Abdel Latif, 2016. "Wind-turbine collective-pitch control via a fuzzy predictive algorithm," Renewable Energy, Elsevier, vol. 87(P1), pages 298-306.
    2. Zaragoza, Jordi & Pou, Josep & Arias, Antoni & Spiteri, Cyril & Robles, Eider & Ceballos, Salvador, 2011. "Study and experimental verification of control tuning strategies in a variable speed wind energy conversion system," Renewable Energy, Elsevier, vol. 36(5), pages 1421-1430.
    3. Odgaard, Peter Fogh & Larsen, Lars F.S. & Wisniewski, Rafael & Hovgaard, Tobias Gybel, 2016. "On using Pareto optimality to tune a linear model predictive controller for wind turbines," Renewable Energy, Elsevier, vol. 87(P2), pages 884-891.
    4. Duong, Minh Quan & Grimaccia, Francesco & Leva, Sonia & Mussetta, Marco & Ogliari, Emanuele, 2014. "Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system," Renewable Energy, Elsevier, vol. 70(C), pages 197-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dongran & Tu, Yanping & Wang, Lei & Jin, Fangjun & Li, Ziqun & Huang, Chaoneng & Xia, E & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Hoon Joo, Young, 2022. "Coordinated optimization on energy capture and torque fluctuation of wind turbines via variable weight NMPC with fuzzy regulator," Applied Energy, Elsevier, vol. 312(C).
    2. Pustina, L. & Biral, F. & Serafini, J., 2022. "A novel Economic Nonlinear Model Predictive Controller for power maximisation on wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    2. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2019. "Tube-based explicit model predictive output-feedback controller for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 131(C), pages 549-562.
    3. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    4. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    5. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    6. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    7. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    8. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
    9. Deyi Fu & Lingxing Kong & Lice Gong & Anqing Wang & Haikun Jia & Na Zhao, 2023. "Wind Turbine Load Optimization Control Strategy Based on LIDAR Feed-Forward Control for Primary Frequency Modulation Process with Pitch Angle Reservation," Energies, MDPI, vol. 16(1), pages 1-14, January.
    10. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    11. Jun Dong & Shengnan Li & Shuijun Wu & Tingyi He & Bo Yang & Hongchun Shu & Jilai Yu, 2017. "Nonlinear Observer-Based Robust Passive Control of Doubly-Fed Induction Generators for Power System Stability Enhancement via Energy Reshaping," Energies, MDPI, vol. 10(8), pages 1-16, July.
    12. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    13. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    14. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    15. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    16. Hu, Ruiqi & Le, Conghuan & Gao, Zhen & Ding, Hongyan & Zhang, Puyang, 2021. "Implementation and evaluation of control strategies based on an open controller for a 10 MW floating wind turbine," Renewable Energy, Elsevier, vol. 179(C), pages 1751-1766.
    17. Alhassan H. Alattar & S. I. Selem & Hamid M. B. Metwally & Ahmed Ibrahim & Raef Aboelsaud & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Performance Enhancement of Micro Grid System with SMES Storage System Based on Mine Blast Optimization Algorithm," Energies, MDPI, vol. 12(16), pages 1-23, August.
    18. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    19. Cuauhtemoc Acosta Lúa & Domenico Bianchi & Salvador Martín Baragaño & Mario Di Ferdinando & Stefano Di Gennaro, 2023. "Robust Nonlinear Control of a Wind Turbine with a Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 16(18), pages 1-19, September.
    20. Lin, Zhongwei & Chen, Zhenyu & Wu, Qiuwei & Yang, Shuo & Meng, Hongmin, 2018. "Coordinated pitch & torque control of large-scale wind turbine based on Pareto efficiency analysis," Energy, Elsevier, vol. 147(C), pages 812-825.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:777-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.