IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp535-547.html
   My bibliography  Save this article

A gravo-aeroelastically scaled wind turbine rotor at field-prototype scale with strict structural requirements

Author

Listed:
  • Yao, Shulong
  • Griffith, D. Todd
  • Chetan, Mayank
  • Bay, Christopher J.
  • Damiani, Rick
  • Kaminski, Meghan
  • Loth, Eric

Abstract

A new sub-scale field-prototype design solution is developed to realize the dynamics, structural response, and distributed loads (gravitational, aerodynamic, centrifugal) that are characteristic of a full-scale large, modern wind turbine rotor. Prior work in sub-scale wind turbine testing has focused on matching aerodynamic/aero-elastic characteristics of full-scale rotors at wind tunnel scale. However, large-scale rotor designs must expand beyond this limited set of scaling parameters for cost-effective prototyping and meet strict requirements for structural safety for field testing. The challenge lies in producing a structural design meeting two competing objectives: novel scaling objectives that prescribe the sub-scale blade to have low mass and stiffness; and traditional structural safety objectives that drive the design to have higher stiffness and mass. A 20% gravo-aeroelastically scaled wind turbine blade is developed successfully that satisfies these competing objectives. First, it achieved close agreement for non-dimensional tip deflection and flap-wise blade frequency (both within 2.1%) with a blade mass distribution constrained to produce target gravitational and centrifugal loads. Second, the entire blade structure was optimized to ensure a safe, manufacturable solution meeting strict strength requirements for a testing site that can experience up to 45 m/s wind gusts. The prototype-scale blade was fabricated and successfully proof-load tested.

Suggested Citation

  • Yao, Shulong & Griffith, D. Todd & Chetan, Mayank & Bay, Christopher J. & Damiani, Rick & Kaminski, Meghan & Loth, Eric, 2020. "A gravo-aeroelastically scaled wind turbine rotor at field-prototype scale with strict structural requirements," Renewable Energy, Elsevier, vol. 156(C), pages 535-547.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:535-547
    DOI: 10.1016/j.renene.2020.03.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120304900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.03.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    2. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    3. Kaminski, Meghan & Loth, Eric & Griffith, D. Todd & Qin, Chao (Chris), 2020. "Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design," Renewable Energy, Elsevier, vol. 148(C), pages 639-650.
    4. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.
    5. Cho, Taehwan & Kim, Cheolwan, 2012. "Wind tunnel test results for a 2/4.5 scale MEXICO rotor," Renewable Energy, Elsevier, vol. 42(C), pages 152-156.
    6. Ryi, Jaeha & Rhee, Wook & Chang Hwang, Ui & Choi, Jong-Soo, 2015. "Blockage effect correction for a scaled wind turbine rotor by using wind tunnel test data," Renewable Energy, Elsevier, vol. 79(C), pages 227-235.
    7. Noyes, Carlos & Qin, Chao & Loth, Eric, 2018. "Pre-aligned downwind rotor for a 13.2 MW wind turbine," Renewable Energy, Elsevier, vol. 116(PA), pages 749-754.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Haoran & Ma, Zhe & Dou, Bingzheng & Zeng, Pan & Lei, Liping, 2020. "Investigation on the performance of a novel forward-folding rotor used in a downwind horizontal-axis turbine," Energy, Elsevier, vol. 190(C).
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. Momeni, Farhang & Sabzpoushan, Seyedali & Valizadeh, Reza & Morad, Mohammad Reza & Liu, Xun & Ni, Jun, 2019. "Plant leaf-mimetic smart wind turbine blades by 4D printing," Renewable Energy, Elsevier, vol. 130(C), pages 329-351.
    4. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Kaminski, Meghan & Loth, Eric & Griffith, D. Todd & Qin, Chao (Chris), 2020. "Ground testing of a 1% gravo-aeroelastically scaled additively-manufactured wind turbine blade with bio-inspired structural design," Renewable Energy, Elsevier, vol. 148(C), pages 639-650.
    6. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    7. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    8. Singh, Dileep & Yu, Wenhua & France, David M. & Allred, Taylor P. & Liu, I-Han & Du, Wenchao & Barua, Bipul & Messner, Mark C., 2020. "One piece ceramic heat exchanger for concentrating solar power electric plants," Renewable Energy, Elsevier, vol. 160(C), pages 1308-1315.
    9. Yan, Chi & Archer, Cristina L., 2018. "Assessing compressibility effects on the performance of large horizontal-axis wind turbines," Applied Energy, Elsevier, vol. 212(C), pages 33-45.
    10. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    11. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Daniel Duda & Vitalii Yanovych & Volodymyr Tsymbalyuk & Václav Uruba, 2022. "Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV," Energies, MDPI, vol. 15(3), pages 1-27, February.
    13. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    14. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    15. Ali M. H. A. Khajah & Simon P. Philbin, 2022. "Techno-Economic Analysis and Modelling of the Feasibility of Wind Energy in Kuwait," Clean Technol., MDPI, vol. 4(1), pages 1-21, January.
    16. Haojie Kang & Bofeng Xu & Xiang Shen & Zhen Li & Xin Cai & Zhiqiang Hu, 2023. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition," Energies, MDPI, vol. 16(6), pages 1-13, March.
    17. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    18. Wiroon Monatrakul & Kritsadang Senawong & Piyawat Sritram & Ratchaphon Suntivarakorn, 2023. "A Comparison Study of Hydro-Compact Generators with Horizontal Spiral Turbines (HSTs) and a Three-Blade Turbine Used in Irrigation Canals," Energies, MDPI, vol. 16(5), pages 1-15, February.
    19. Martín-San-Román, Raquel & Benito-Cia, Pablo & Azcona-Armendáriz, José & Cuerva-Tejero, Alvaro, 2021. "Validation of a free vortex filament wake module for the integrated simulation of multi-rotor wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 1706-1718.
    20. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:535-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.