IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp255-262.html
   My bibliography  Save this article

The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis

Author

Listed:
  • Zhang, Yufeng
  • Xie, Xingyun
  • Zhao, Jing
  • Wei, Xiaolin

Abstract

Biomass is an abundant and clean resource with good application value. However, due to high contain of alkali metals, it causes boiler’s corrosion and slagging during utilization. In this paper, pyrolysis experiments were carried out from 200 to 1000 °C and a series of detection methods are applied to explore occurrence, release and conversion characteristics of wheat straw. When temperatures are raised from 200 to 1000 °C, water-soluble K releases first. Then NH4Ac soluble K converts to water-soluble K. It is found that NO3− content is high, which accounts for 27.11% of total anions. At low temperatures (<400 °C) 35.50% K will release as KNO3, which is larger than that of the solid fuels with less NO3−. Meanwhile part of K and Cl enriches on particles surface due to carrying of moisture. When temperatures are higher than 400 °C, K is mainly released in the form of KCl. As KCl on the sample surface is released, K and Cl inside the sample can’t reach the sample surface. At 600 °C, the total KCl content increases to the maximum. Furthermore it is found that NH4Ac soluble K can convert into water-soluble K. When it is 800 °C, K release is 53.66%. And K release accounts for 55.26% at 1000 °C.

Suggested Citation

  • Zhang, Yufeng & Xie, Xingyun & Zhao, Jing & Wei, Xiaolin, 2020. "The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis," Renewable Energy, Elsevier, vol. 151(C), pages 255-262.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:255-262
    DOI: 10.1016/j.renene.2019.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931688X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
    2. Sandberg, Jan & Karlsson, Christer & Fdhila, Rebei Bel, 2011. "A 7Â year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler," Applied Energy, Elsevier, vol. 88(1), pages 99-110, January.
    3. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Li & Jiale Zhang & Zhihe Li & Yongjun Li, 2020. "Characteristics of Aerosol Formation and Emissions During Corn Stalk Pyrolysis," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    2. Cao, Wenhan & Martí-Rosselló, Teresa & Li, Jun & Lue, Leo, 2019. "Prediction of potassium compounds released from biomass during combustion," Applied Energy, Elsevier, vol. 250(C), pages 1696-1705.
    3. Yao, Xiwen & Zheng, Yan & Zhou, Haodong & Xu, Kaili & Xu, Qingwei & Li, Li, 2020. "Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite," Renewable Energy, Elsevier, vol. 147(P1), pages 2309-2320.
    4. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    5. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    7. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    8. Chen, Guanyi & Wenga, Terrence & Ma, Wenchao & Lin, Fawei, 2019. "Theoretical and experimental study of gas-phase corrosion attack of Fe under simulated municipal solid waste combustion: Influence of KCl, SO2, HCl, and H2O vapour," Applied Energy, Elsevier, vol. 247(C), pages 630-642.
    9. Wan, Kaidi & Vervisch, Luc & Gao, Zhenxun & Domingo, Pascale & Jiang, Chongwen & Xia, Jun & Wang, Zhihua, 2020. "Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms," Energy, Elsevier, vol. 211(C).
    10. Shi, Kaiqi & Oladejo, Jumoke Mojisola & Yan, Jiefeng & Wu, Tao, 2019. "Investigation on the interactions among lignocellulosic constituents and minerals of biomass and their influences on co-firing," Energy, Elsevier, vol. 179(C), pages 129-137.
    11. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    12. Reinmöller, Markus & Schreiner, Marcus & Laabs, Marcel & Scharm, Christoph & Yao, Zhitong & Guhl, Stefan & Neuroth, Manuela & Meyer, Bernd & Gräbner, Martin, 2023. "Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes," Renewable Energy, Elsevier, vol. 210(C), pages 627-639.
    13. Lee, Sang Yeol & Oh, Kwang Cheol & Lee, Chung Geon & Cho, La Hoon & Park, Sun Yong & Jeong, In Seon & Kim, Dae Hyun, 2018. "Improvement of thermal efficiency of wood pellet boilers through the refractory insulation in a combustion chamber and fire tube and baffle modification," Energy, Elsevier, vol. 161(C), pages 1115-1121.
    14. Liukkonen, Mika & Hälikkä, Eero & Hiltunen, Teri & Hiltunen, Yrjö, 2012. "Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler," Applied Energy, Elsevier, vol. 97(C), pages 483-490.
    15. Liu, Yacheng & Fan, Weidong & Guo, Hao, 2020. "A calculation model for the overall process of high temperature corrosion mechanism induced by firing coal with high chlorine and sodium content," Energy, Elsevier, vol. 205(C).
    16. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    17. Ghorashi, Seyed Amin & Khandelwal, Bhupendra, 2023. "Toward the ultra-clean and highly efficient biomass-fired heaters. A review," Renewable Energy, Elsevier, vol. 205(C), pages 631-647.
    18. Zhao, Chuanwen & Guo, Yafei & Yan, Junjie & Sun, Jian & Li, Weiling & Lu, Ping, 2019. "Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends," Applied Energy, Elsevier, vol. 242(C), pages 453-461.
    19. Namkung, Hueon & Xu, Li-Hua & Kang, Tae-Jin & Kim, Dae Sung & Kwon, Hyok-Bo & Kim, Hyung-Taek, 2013. "Prediction of coal fouling using an alternative index under the gasification condition," Applied Energy, Elsevier, vol. 102(C), pages 1246-1255.
    20. Maj, Izabella & Kalisz, Sylwester & Szymajda, Aneta & Łaska, Grażyna & Gołombek, Klaudiusz, 2021. "The influence of cow dung and mixed straw ashes on steel corrosion," Renewable Energy, Elsevier, vol. 177(C), pages 1198-1211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:255-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.