IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp425-436.html
   My bibliography  Save this article

Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends

Author

Listed:
  • Saravanan, S.
  • Kaliyanasunder, R.
  • Rajesh Kumar, B.
  • Lakshmi Narayana Rao, G.

Abstract

The present study attempts to study the influences of piston geometry, butanol fumigation, EGR, injection pressure and injection timing upon the performance and emissions of a light-duty DI diesel engine fuelled with diesel, Jatropha methyl ester (JME) and 20% by vol. of n-butanol/diesel blends. Experiments were designed based on Taguchi L18 orthogonal array that considered main fuel injection timing, EGR, premixing ratio of n-butanol with diesel, injection pressure, secondary injection timing, piston geometry, main injection fuel and secondary injection fuel as factors and NOx emission, smoke opacity and BSFC as responses. The best combination of the above factor levels were predicted by using desirability function. Results indicated that B20 injected at 20°CA bTDC with an injection pressure of 200 bar under 10% EGR alongside 40% by vol. of butanol/diesel fumigation with a premixing ratio of 20% at 9°CA aTDC in the engine fitted with a torroidal piston was predicted to deliver 359.13 ppm of NOx emissions, 74.83% of smoke opacity with 1.127kg/kWh of BSFC. The tests revealed that the predictions by using desirability function were within a reasonable accuracy of 10%.

Suggested Citation

  • Saravanan, S. & Kaliyanasunder, R. & Rajesh Kumar, B. & Lakshmi Narayana Rao, G., 2020. "Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends," Renewable Energy, Elsevier, vol. 148(C), pages 425-436.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:425-436
    DOI: 10.1016/j.renene.2019.10.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931540X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    2. Beatrice, Carlo & Napolitano, Pierpaolo & Guido, Chiara, 2014. "Injection parameter optimization by DoE of a light-duty diesel engine fed by Bio-ethanol/RME/diesel blend," Applied Energy, Elsevier, vol. 113(C), pages 373-384.
    3. Jaichandar, S. & Annamalai, K., 2013. "Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 55(C), pages 330-339.
    4. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    5. Liu, Haifeng & Wang, Xin & Zheng, Zunqing & Gu, Jingbo & Wang, Hu & Yao, Mingfa, 2014. "Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine," Energy, Elsevier, vol. 74(C), pages 741-752.
    6. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    7. Al-Hinti, I. & Samhouri, M. & Al-Ghandoor, A. & Sakhrieh, A., 2009. "The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach," Applied Energy, Elsevier, vol. 86(1), pages 113-121, January.
    8. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    9. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Hosmath, R.S. & Donateo, Teresa & Tewari, P.G., 2016. "Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels," Renewable Energy, Elsevier, vol. 93(C), pages 483-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masera, Kemal & Hossain, Abul K. & Davies, Philip A. & Doudin, Khalid, 2021. "Investigation of 2-butoxyethanol as biodiesel additive on fuel property and combustion characteristics of two neat biodiesels," Renewable Energy, Elsevier, vol. 164(C), pages 285-297.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    2. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    3. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    4. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    5. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    7. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    8. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    9. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    10. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    11. Meng Xia & Fujun Zhang, 2020. "Application of Multi-Parameter Fuzzy Optimization to Enhance Performance of a Regulated Two-Stage Turbocharged Diesel Engine Operating at High Altitude," Energies, MDPI, vol. 13(17), pages 1-12, August.
    12. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    13. Khan, Shahanwaz & Panua, Rajsekhar & Bose, Probir Kumar, 2019. "The impact of combustion chamber configuration on combustion and emissions of a single cylinder diesel engine fuelled with soybean methyl ester blends with diesel," Renewable Energy, Elsevier, vol. 143(C), pages 335-351.
    14. Shivashimpi, Mahantesh M. & Alur, S.A. & Topannavar, S.N. & Dodamani, B.M., 2018. "Combined effect of combustion chamber shapes and nozzle geometry on the performance and emission characteristics of C.I. engine operated on Pongamia," Energy, Elsevier, vol. 154(C), pages 17-26.
    15. Patel, Paresh D. & Lakdawala, Absar & Chourasia, Sajan & Patel, Rajesh N., 2016. "Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 24-43.
    16. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    17. Ayhan, Vezir & Çangal, Çiçek & Cesur, İdris & Safa, Aykut, 2020. "Combined influence of supercharging, EGR, biodiesel and ethanol on emissions of a diesel engine: Proposal of an optimization strategy," Energy, Elsevier, vol. 207(C).
    18. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    19. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    20. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.