IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp1002-1016.html
   My bibliography  Save this article

Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources

Author

Listed:
  • Lubwama, Michael
  • Yiga, Vianney Andrew
  • Muhairwe, Frank
  • Kihedu, Joseph

Abstract

Domestic energy sources in sub-Saharan Africa are still mainly comprised of firewood and charcoal. One of the main challenges affecting the uptake of carbonized briquettes is their inefficiency in transferring heat. In this study bio-composite briquettes were developed from rice husks, coffee husks and groundnut shells, in varying proportions. The briquettes were developed under low pressure (≤7 MPa) after carbonization and application of starch binder. Thermal properties of the developed bio-composite briquettes were determined by using a bomb calorimeter and thermogravimetric analysis to determine calorific values and physical properties, respectively. Drop strength tests and particle density determinations were performed to study the mechanical strength and integrity of the developed briquettes. The water-boiling test was used to determine time taken to boil 1 L of water. Fourier’s Law of heat conduction was used to investigate heat transfer rates across the briquettes for conditions of binder/binder-less bonding conditions. Calorific values for the developed briquettes ranged between 16.6 MJ/kg and 22 MJ/kg. Results for drop strength for the developed composite briquettes were all above 86%, indicating satisfactory characteristics. Bio-composite briquettes developed using coffee and rice husks bio-chars took less time to boil water compared to all the other bio-composite briquette combinations. Particle densities ranged between 430 kg/m3 and 580 kg/m3. Heat transfer was enhanced when no binder was present and coffee and rice husks were sequentially placed in the briquette composition. This study showed the advantages of producing bio-char bio-composite briquettes over single constituent briquettes. Bio-composite carbonized briquettes produced from rice husks, coffee husks and groundnut shells are a suitable and sustainable alternative to firewood and charcoal use in sub-Saharan Africa.

Suggested Citation

  • Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1002-1016
    DOI: 10.1016/j.renene.2019.10.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bartocci, Pietro & Bidini, Gianni & Asdrubali, Francesco & Beatrice, Carlo & Frusteri, Francesco & Fantozzi, Francesco, 2018. "Batch pyrolysis of pellet made of biomass and crude glycerol: Mass and energy balances," Renewable Energy, Elsevier, vol. 124(C), pages 172-179.
    2. Hao Wang & Pen-Chi Chiang & Yanpeng Cai & Chunhui Li & Xuan Wang & Tse-Lun Chen & Shiming Wei & Qian Huang, 2018. "Application of Wall and Insulation Materials on Green Building: A Review," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    3. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    4. Tembe, E.T. & Ekhuemelo, D.O. & Asue, M.W., 2018. "Physical and Combustion Properties of Briquettes Produced from Composite Materials of Daniela Oliveri, Gmelina Arborea and Bambara Nut Shells in Benue State, Nigeria," International Journal of Pure Agricultural Advances, Pacharapa Naka, vol. 2(1), pages 1-6.
    5. Yazdani, M.G. & Hamizan, M. & Shukur, M.N., 2012. "Investigation of the fuel value and the environmental impact of selected wood samples gathered from Brunei Darussalam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4965-4969.
    6. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    7. Tembe, E. T. & Ekhuemelo, D. O. & Asue, M. W., 2018. "Physical and Combustion Properties of Briquettes Produced from Composite Materials of Daniela Oliveri, Gmelina Arborea and Bambara Nut Shells in Benue State, Nigeria," International Journal of Pure Agricultural Advances, Online Science Publishing, vol. 2(1), pages 1-6.
    8. Liu, Zhengang & Quek, Augustine & Balasubramanian, R., 2014. "Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars," Applied Energy, Elsevier, vol. 113(C), pages 1315-1322.
    9. Lubwama, Michael & Yiga, Vianney Andrew, 2017. "Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 111(C), pages 532-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    2. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Euripedes Garcia Silveira Junior & Victor Haber Perez & Solciaray Cardoso Soares Estefan de Paula & Thays da Costa Silveira & Fabio Lopes Olivares & Oselys Rodriguez Justo, 2023. "Coffee Husks Valorization for Levoglucosan Production and Other Pyrolytic Products through Thermochemical Conversion by Fast Pyrolysis," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    5. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    6. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    2. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    3. Kipngetich, P. & Kiplimo, R. & Tanui, J.K. & Chisale, P.C., 2022. "Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique," Renewable Energy, Elsevier, vol. 198(C), pages 61-74.
    4. Bot, Bill Vaneck & Axaopoulos, Petros J. & Sakellariou, Evangelos I. & Sosso, Olivier Thierry & Tamba, Jean Gaston, 2022. "Energetic and economic analysis of biomass briquettes production from agricultural residues," Applied Energy, Elsevier, vol. 321(C).
    5. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    6. Bill Vaneck Bot & Petros J. Axaopoulos & Evangelos I. Sakellariou & Olivier Thierry Sosso & Jean Gaston Tamba, 2023. "Economic Viability Investigation of Mixed-Biomass Briquettes Made from Agricultural Residues for Household Cooking Use," Energies, MDPI, vol. 16(18), pages 1-13, September.
    7. González, William A. & López, Diana & Pérez, Juan F., 2020. "Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders," Renewable Energy, Elsevier, vol. 147(P1), pages 1139-1150.
    8. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    9. Anna Brunerová & Hynek Roubík & Milan Brožek & David Herák & Vladimír Šleger & Jana Mazancová, 2017. "Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example," Energies, MDPI, vol. 10(12), pages 1-22, December.
    10. Ali Mohammadi & G. Venkatesh & Maria Sandberg & Samieh Eskandari & Stephen Joseph & Karin Granström, 2020. "A Comprehensive Environmental Life Cycle Assessment of the Use of Hydrochar Pellets in Combined Heat and Power Plants," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    11. Yu-Chiao Lu & Liviu Brabie & Andrey V. Karasev & Chuan Wang, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 2: Carburization of Liquid Iron by Addition of Iron–Carbon Briquettes," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    12. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Li, Jie & Pan, Lanjia & Suvarna, Manu & Tong, Yen Wah & Wang, Xiaonan, 2020. "Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning," Applied Energy, Elsevier, vol. 269(C).
    14. Park, Ho Young & Han, Karam & Yu, Geun Sil & Jang, Jihoon & Park, Sangbin & Kim, Hyun Hee & Min, Kyong-il & Kim, Jae-Kon, 2020. "Properties of bioliquids and their impacts on combustion and boiler operation," Energy, Elsevier, vol. 193(C).
    15. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    16. Stefano Cascone & Renata Rapisarda & Dario Cascone, 2019. "Physical Properties of Straw Bales as a Construction Material: A Review," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    17. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    18. Md Tanvir Alam & Jang-Soo Lee & Sang-Yeop Lee & Dhruba Bhatta & Kunio Yoshikawa & Yong-Chil Seo, 2019. "Low Chlorine Fuel Pellets Production from the Mixture of Hydrothermally Treated Hospital Solid Waste, Pyrolytic Plastic Waste Residue and Biomass," Energies, MDPI, vol. 12(22), pages 1-17, November.
    19. Obianuju P. Ilo & Mulala D. Simatele & S’phumelele L. Nkomo & Ntandoyenkosi M. Mkhize & Nagendra G. Prabhu, 2020. "The Benefits of Water Hyacinth ( Eichhornia crassipes ) for Southern Africa: A Review," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    20. Magdalena Kachel & Artur Kraszkiewicz & Alaa Subr & Stanisław Parafiniuk & Artur Przywara & Milan Koszel & Grzegorz Zając, 2020. "Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets," Energies, MDPI, vol. 13(4), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:1002-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.