IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p570-583.html
   My bibliography  Save this article

Small scale solar tower coupled with micro gas turbine

Author

Listed:
  • Giostri, A.
  • Binotti, M.
  • Sterpos, C.
  • Lozza, G.

Abstract

This paper studies a small-scale CSP system composed of a solar tower and a recuperative air micro gas turbine (i.e. net power in the 100–200 kWe range). A code is developed to determine the optical performance of the heliostat field coupled with a secondary concentrator, while another code computes the thermal engine performance. The 832 m2 heliostat field layout is taken from a real plant, while the secondary optics is studied to maximize the optical-thermal efficiency. The selected secondary concentrator (CPC), with an aperture diameter of 0.5 m and an acceptance angle of 35° tilted of 52.5°, guarantees an overall optical efficiency of 77.9% in design conditions (Spring equinox, solar noon) and of 66.9% on yearly basis. For every Effective DNI (EDNI) and ambient temperature the turbine operation is optimized allowing to achieve a yearly solar-to-electricity efficiency of 16.3%. Summing up the cost of each component, an overall plant cost of about 2300 €/kW (peak) and a LCOE of 175 €/MWh are obtained. A sensitivity analysis on design EDNI, impacting on turbine size, is performed showing that its reduction from 700 W/m2 to 550 W/m2 allows reducing the LCOE down to 158 €/MWh, a value competitive with large-scale solar towers. The possibility of hybridization of plant (i.e. improving the gas turbine power output in selected hours, by means of biomethane or natural gas combustion) was considered to further reduce the LCOE.

Suggested Citation

  • Giostri, A. & Binotti, M. & Sterpos, C. & Lozza, G., 2020. "Small scale solar tower coupled with micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 570-583.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:570-583
    DOI: 10.1016/j.renene.2019.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S. & Rodríguez, José M. & Muñoz, Antonio, 2017. "Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation," Applied Energy, Elsevier, vol. 194(C), pages 108-122.
    2. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    3. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    4. Mahmood, Mariam & Traverso, Alberto & Traverso, Alberto Nicola & Massardo, Aristide F. & Marsano, Davide & Cravero, Carlo, 2018. "Thermal energy storage for CSP hybrid gas turbine systems: Dynamic modelling and experimental validation," Applied Energy, Elsevier, vol. 212(C), pages 1240-1251.
    5. Galanti, Leandro & Massardo, Aristide F., 2011. "Micro gas turbine thermodynamic and economic analysis up to 500kWe size," Applied Energy, Elsevier, vol. 88(12), pages 4795-4802.
    6. Gavagnin, Giacomo & Rech, Sergio & Sánchez, David & Lazzaretto, Andrea, 2018. "Optimum design and performance of a solar dish microturbine using tailored component characteristics," Applied Energy, Elsevier, vol. 231(C), pages 660-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta De Robbio & Maria Cristina Cameretti & Salvatore Agizza, 2023. "Design and Thermo-Economic Analysis of an Integrated Solar Field Micro Gas Turbine Biomass Gasifier and Organic Rankine Cycle System," Energies, MDPI, vol. 16(20), pages 1-25, October.
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Ghavami, Mohsen & Al-Zaili, Jafar & Sayma, Abdulnaser I., 2022. "A methodology for techno-economic and operation strategy optimisation of micro gas turbine-based solar powered dish-engine systems," Energy, Elsevier, vol. 251(C).
    4. Scott C. Rowe & Taylor A. Ariko & Kaylin M. Weiler & Jacob T. E. Spana & Alan W. Weimer, 2020. "Reversible Molten Catalytic Methane Cracking Applied to Commercial Solar-Thermal Receivers," Energies, MDPI, vol. 13(23), pages 1-21, November.
    5. de Beer, J.H. & le Roux, W.G. & Sciacovelli, A. & Meyer, J.P., 2023. "Effect of a novel cooling window on a recuperated solar-dish Brayton cycle," Renewable Energy, Elsevier, vol. 208(C), pages 465-480.
    6. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).
    7. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    8. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    9. Ramin Ghasemiasl & Hossein Dehghanizadeh & Mohammad Amin Javadi & Mohammad Abdolmaleki, 2023. "4E Transient Analysis of a Solar-Hybrid Gas-Turbine Cycle Equipped with Heliostat and MED," Sustainability, MDPI, vol. 15(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S. & Rodríguez, José M. & Muñoz, Antonio, 2017. "Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation," Applied Energy, Elsevier, vol. 194(C), pages 108-122.
    2. Davide Iaria & Homam Nipkey & Jafar Al Zaili & Abdulnaser Ibrahim Sayma & Mohsen Assadi, 2018. "Development and Validation of a Thermo-Economic Model for Design Optimisation and Off-Design Performance Evaluation of a Pure Solar Microturbine," Energies, MDPI, vol. 11(11), pages 1-26, November.
    3. Ghavami, Mohsen & Al-Zaili, Jafar & Sayma, Abdulnaser I., 2022. "A methodology for techno-economic and operation strategy optimisation of micro gas turbine-based solar powered dish-engine systems," Energy, Elsevier, vol. 251(C).
    4. Judit García-Ferrero & Irene Heras & María Jesús Santos & Rosa Pilar Merchán & Alejandro Medina & Antonio González & Antonio Calvo Hernández, 2020. "Thermodynamic and Cost Analysis of a Solar Dish Power Plant in Spain Hybridized with a Micro-Gas Turbine," Energies, MDPI, vol. 13(19), pages 1-24, October.
    5. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    7. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    9. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    10. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    11. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    12. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    13. Verstraete, Dries & Bowkett, Carlos, 2015. "Impact of heat transfer on the performance of micro gas turbines," Applied Energy, Elsevier, vol. 138(C), pages 445-449.
    14. Manzoni, Matteo & Patti, Alberto & Maccarini, Simone & Traverso, Alberto, 2022. "Analysis and comparison of innovative large scale thermo-mechanical closed cycle energy storages," Energy, Elsevier, vol. 249(C).
    15. Sachdeva, Jatin & Singh, Onkar, 2019. "Thermodynamic analysis of solar powered triple combined Brayton, Rankine and organic Rankine cycle for carbon free power," Renewable Energy, Elsevier, vol. 139(C), pages 765-780.
    16. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    17. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    18. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    19. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    20. Kamath, Harsh G. & Majumdar, Rudrodip & Krishnan, A.V. & Srikanth, R., 2022. "Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:570-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.