IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1231-1238.html
   My bibliography  Save this article

Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey

Author

Listed:
  • Cubukcu, M.
  • Akanalci, A.

Abstract

In recent five years, the capacity of photovoltaic power systems (PVPS) based on solar energy had a significant improvement in Turkey. Approximately 1.8 GWp PVPS was installed in 2017 and reached to 5.062 GWp cumulative capacity at the end of the year 2018. In this development phase, it is critical to ensure a long-term high quality of PV power generation. To achieve a sustainable development, the quality inspections has to be in place. It assures that expected commercial gains are caught and PV plants achieve a long service life. On-site testing of PVPS is very helpful to evaluate the real performance of the plant and diagnose the failures. When compared to other inspection methods, the most time-efficient one is infrared thermal imaging (IRT) of the PV modules and also the electrical components. In this study, the results of IRT inspection for 19 different PVPSs in Turkey (115.36 MWp in total) is presented. The diagnosed defects were classified according to the failure type and the number of them were normalized per MWp to evaluate the most frequently observed issues during the field tests. The experimentation, both in terms of accuracy and processing time, confirms the effectiveness and the efficiency of the thermal imaging approach. The results also showed that the sampling rate of testing is very critical to get a right comparison and failure types are mainly caused due to active bypass diodes and hotspots on PV modules, non-operative modules and strings, abnormally heated cables/fuses/breakers and interconnection points.

Suggested Citation

  • Cubukcu, M. & Akanalci, A., 2020. "Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey," Renewable Energy, Elsevier, vol. 147(P1), pages 1231-1238.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1231-1238
    DOI: 10.1016/j.renene.2019.09.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsanakas, John A. & Ha, Long D. & Al Shakarchi, F., 2017. "Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery," Renewable Energy, Elsevier, vol. 102(PA), pages 224-233.
    2. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    3. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    4. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    5. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Saif Hassan Onim & Zubayar Mahatab Md Sakif & Adil Ahnaf & Ahsan Kabir & Abul Kalam Azad & Amanullah Maung Than Oo & Rafina Afreen & Sumaita Tanjim Hridy & Mahtab Hossain & Taskeed Jabid & Md Sawka, 2022. "SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels," Energies, MDPI, vol. 16(1), pages 1-19, December.
    2. Thenmozhi Rajagopal & Amutha Balakrishnan & Sreeram Valsalakumar & Thundil Karuppa Raj Rajagopal & Senthilarasu Sundaram, 2021. "Application of MSVPC- 5G Multicast SDN Network Eminence Video Transmission in Drone Thermal Imaging for Solar Farm Monitoring," Energies, MDPI, vol. 14(24), pages 1-16, December.
    3. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    4. Hocine, Labar & Samira, Kelaiaia Mounia & Tarek, Mesbah & Salah, Necaibia & Samia, Kelaiaia, 2021. "Automatic detection of faults in a photovoltaic power plant based on the observation of degradation indicators," Renewable Energy, Elsevier, vol. 164(C), pages 603-617.
    5. Alberti, A.R. & Neto, W.A. Ferreira & Cavalcante, C.A.V. & Santos, A.C.J., 2022. "Modelling a flexible two-phase inspection-maintenance policy for safety-critical systems considering revised and non-revised inspections," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    2. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.
    3. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    4. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    5. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    7. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2018. "Energy and economic losses caused by dust on residential photovoltaic (PV) systems deployed in different climate areas," Renewable Energy, Elsevier, vol. 120(C), pages 401-412.
    8. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    9. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    10. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    11. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    12. Silva, Aline M. & Melo, Fernando C. & Reis, Joaquim H. & Freitas, Luiz C.G., 2019. "The study and application of evaluation methods for photovoltaic modules under real operational conditions, in a region of the Brazilian Southeast," Renewable Energy, Elsevier, vol. 138(C), pages 1189-1204.
    13. Ballestrín, Jesús & Polo, Jesús & Martín-Chivelet, Nuria & Barbero, Javier & Carra, Elena & Alonso-Montesinos, Joaquín & Marzo, Aitor, 2022. "Soiling forecasting of solar plants: A combined heuristic approach and autoregressive model," Energy, Elsevier, vol. 239(PE).
    14. Yu Jiang & Lin Lu, 2016. "Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV) Modules," Sustainability, MDPI, vol. 8(11), pages 1-9, October.
    15. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    16. Maruthi Prasad, R. & Krishnamoorthy, A., 2019. "Design validation and analysis of the drive range enhancement and battery bank deration in electric vehicle integrated with split power solar source," Energy, Elsevier, vol. 172(C), pages 106-116.
    17. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    18. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    19. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Babatunde, A.A. & Abbasoglu, S. & Senol, M., 2018. "Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1017-1026.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1231-1238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.