IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1867-1878.html
   My bibliography  Save this article

Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)

Author

Listed:
  • Yang, Bin
  • Liu, Jiemei
  • Song, Yawei
  • Wang, Ning
  • Li, Han

Abstract

The preparation process of three common nanocomposite phase change materials (NCPCMs) was studied by using the single-factor test method, and the influences of drying treatment, additives, ultrasonic power and time, base liquid volume and particle concentration on the stability of NCPCMs were analyzed. The results are as follows: (1) Drying treatment had the most significant effect on the stability of ZnO NCPCMs. Additive treatment has the most significant effect on the stability of Al2O3, and the improvement degree is about 9 times of CuO and 2 times of ZnO. (2) The ultrasonic power treatment method has the most significant effect on the stability of Al2O3 NCPCMs. For the sample with the worst preparation effect, the relative absorbance of the uniformly dispersed Al2O3 NCPCMs increased by 20.30%. (3) The stability of ZnO NCPCMs was significantly affected by ultrasonic time treatment and base liquid volume. Under the two preparation conditions, the relative absorbance of the uniformly dispersed ZnO NCPCMs increased by 65.67% and 38.24%, respectively, relative to the worst-performing samples. (4) The particle concentration factor has the most significant effect on the stability of CuO NCPCMs. At the same time, the optimal preparation scheme of NCPCMs was obtained.

Suggested Citation

  • Yang, Bin & Liu, Jiemei & Song, Yawei & Wang, Ning & Li, Han, 2020. "Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)," Renewable Energy, Elsevier, vol. 146(C), pages 1867-1878.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1867-1878
    DOI: 10.1016/j.renene.2019.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931239X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iqbal, Kashif & Sun, Danmei, 2014. "Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials," Renewable Energy, Elsevier, vol. 71(C), pages 473-479.
    2. Yancang Li & Lei Zhao & Juanjuan Suo, 2014. "Comprehensive Assessment on Sustainable Development of Highway Transportation Capacity Based on Entropy Weight and TOPSIS," Sustainability, MDPI, vol. 6(7), pages 1-9, July.
    3. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    4. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    5. Tay, N.H.S. & Liu, M. & Belusko, M. & Bruno, F., 2017. "Review on transportable phase change material in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 264-277.
    6. Tao, Y.B. & Lin, C.H. & He, Y.L., 2015. "Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material," Applied Energy, Elsevier, vol. 156(C), pages 478-489.
    7. Wang, Yi & Xia, Tian Dong & Feng, Hui Xia & Zhang, Han, 2011. "Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 36(6), pages 1814-1820.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bing, Naici & Yang, Jie & Gao, Huan & Xie, Huaqing & Yu, Wei, 2021. "Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion," Renewable Energy, Elsevier, vol. 173(C), pages 926-933.
    2. Wang, Jin & Li, Yanxin & Zheng, Dan & Mikulčić, Hrvoje & Vujanović, Milan & Sundén, Bengt, 2021. "Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    2. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    5. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    6. Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
    7. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    8. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    9. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    10. Nomura, Takahiro & Zhu, Chunyu & Nan, Sheng & Tabuchi, Kazuki & Wang, Shuangfeng & Akiyama, Tomohiro, 2016. "High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network," Applied Energy, Elsevier, vol. 179(C), pages 1-6.
    11. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    12. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    13. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    14. Abbas Sahi Shareef & Haider Nadhom Azziz & Ameer Abdul-Salam, 2022. "Techniques for extracting pure water by solar still with Fresnel lens and phase change materials," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(6), pages 45-52, June.
    15. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    16. Yi Qin & Jiawen He & Miao Wei & Xixi Du, 2022. "Challenges Threatening Agricultural Sustainability in Central Asia: Status and Prospect," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Željko Stević & Dragan Pamučar & Marko Subotić & Jurgita Antuchevičiene & Edmundas Kazimieras Zavadskas, 2018. "The Location Selection for Roundabout Construction Using Rough BWM-Rough WASPAS Approach Based on a New Rough Hamy Aggregator," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    19. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    20. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1867-1878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.