IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp1717-1731.html
   My bibliography  Save this article

Optimal design of data center cooling systems concerning multi-chiller system configuration and component selection for energy-efficient operation and maximized free-cooling

Author

Listed:
  • Cheung, Howard
  • Wang, Shengwei

Abstract

The large data center electricity consumption is a growing global concern. To be environment-friendly and to enhance energy efficiency in operation, data center cooling systems adopt a variety of advanced cooling and renewable energy technologies such as free cooling. However, these free cooling systems are not optimally designed in field practices, and their energy efficiencies are much lower than that of the ideal case. In this study, optimal designs in water piping, pumps and equipment sequencing control are introduced to maximize the cooling efficiency of free cooling systems. It finds that the use of distribution headers around cooling towers and pumps, the maximization of the number of operating cooling towers, the minimization of the number of operating pumps and the mixed use of large and small single-speed pumps can reduce the system's power consumption by 60% under certain operating conditions. The results also show that the designs can reduce the annual energy consumption by 3–15% depending on the climate conditions.

Suggested Citation

  • Cheung, Howard & Wang, Shengwei, 2019. "Optimal design of data center cooling systems concerning multi-chiller system configuration and component selection for energy-efficient operation and maximized free-cooling," Renewable Energy, Elsevier, vol. 143(C), pages 1717-1731.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1717-1731
    DOI: 10.1016/j.renene.2019.05.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hangxin & Wang, Shengwei, 2017. "Probabilistic optimal design concerning uncertainties and on-site adaptive commissioning of air-conditioning water pump systems in buildings," Applied Energy, Elsevier, vol. 202(C), pages 53-65.
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    3. Cheung, Howard & Wang, Shengwei & Zhuang, Chaoqun & Gu, Jiefan, 2018. "A simplified power consumption model of information technology (IT) equipment in data centers for energy system real-time dynamic simulation," Applied Energy, Elsevier, vol. 222(C), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    2. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    3. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    2. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    3. Rampazzo, Mirco & Lionello, Michele & Beghi, Alessandro & Sisti, Enrico & Cecchinato, Luca, 2019. "A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems," Applied Energy, Elsevier, vol. 250(C), pages 1719-1728.
    4. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    5. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    6. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    7. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    8. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    9. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    10. Ieva Pakere & Kirils Goncarovs & Armands Grāvelsiņš & Marita Agate Zirne, 2024. "Dynamic Modelling of Data Center Waste Heat Potential Integration in District Heating in Latvia," Energies, MDPI, vol. 17(2), pages 1-13, January.
    11. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    12. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    13. Qv, Dehu & Ni, Long & Yao, Yang & Hu, Wenju, 2015. "Reliability verification of a solar–air source heat pump system with PCM energy storage in operating strategy transition," Renewable Energy, Elsevier, vol. 84(C), pages 46-55.
    14. Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2023. "A robust capacity configuration selection method of multiple-chiller system concerned with the uncertainty of annual hourly load profile," Energy, Elsevier, vol. 282(C).
    15. Moazamigoodarzi, Hosein & Gupta, Rohit & Pal, Souvik & Tsai, Peiying Jennifer & Ghosh, Suvojit & Puri, Ishwar K., 2020. "Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures," Applied Energy, Elsevier, vol. 261(C).
    16. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    17. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    18. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    19. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    20. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:1717-1731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.