IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp971-979.html
   My bibliography  Save this article

Using electro-coagulation treatment to remove phenolic compounds and furan derivatives in hydrolysates resulting from pilot-scale supercritical water hydrolysis of Mongolian oak

Author

Listed:
  • Jeong, Hanseob
  • Lee, Jaejung
  • Ju, Young Min
  • Lee, Soo Min

Abstract

In this study, an electro-coagulation treatment is performed to remove phenolic compounds, 5-hydroxymethylfurfural (5-HMF), and furfural from hydrolysates obtained by pilot-scale supercritical water hydrolysis (SCWH) of lignocellulosic biomass. The treatment used aluminum electrodes under various conditions (initial pH: 2.5–11, voltage: 0–10 V, and electrolyte (NaCl) concentration: 0–1.6% (w/v)). Changes in the treatment parameters resulted in more than 40% of phenolic compounds and most of the 5-HMF and furfural being removed from the hydrolysates at the optimal condition (pH 5/10 V/0.8% NaCl/180 min) while the initial sugar (glucose and xylose) concentrations were maintained. Therefore, the electro-coagulation treatment may provide a more effective purification process for sugar production compared to the conventional activated charcoal treatment process, which causes sugar loss (>25%).

Suggested Citation

  • Jeong, Hanseob & Lee, Jaejung & Ju, Young Min & Lee, Soo Min, 2019. "Using electro-coagulation treatment to remove phenolic compounds and furan derivatives in hydrolysates resulting from pilot-scale supercritical water hydrolysis of Mongolian oak," Renewable Energy, Elsevier, vol. 138(C), pages 971-979.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:971-979
    DOI: 10.1016/j.renene.2019.01.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.01.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    2. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    3. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    2. Raud, M. & Kikas, T. & Sippula, O. & Shurpali, N.J., 2019. "Potentials and challenges in lignocellulosic biofuel production technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 44-56.
    3. Gabriella Garbarino & Giovanni Pampararo & Thanh Khoa Phung & Paola Riani & Guido Busca, 2020. "Heterogeneous Catalysis in (Bio)Ethanol Conversion to Chemicals and Fuels: Thermodynamics, Catalysis, Reaction Paths, Mechanisms and Product Selectivities," Energies, MDPI, vol. 13(14), pages 1-19, July.
    4. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Adekunle, Ademola & Osazuwa, Peter & Raghavan, Vijaya, 2016. "Socio-economic determinants of agricultural mechanisation in Africa: A research note based on cassava cultivation mechanisation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 313-319.
    6. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    7. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    9. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    10. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    11. Blessing Chidinma Nwachukwu & Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2021. "Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability," Agriculture, MDPI, vol. 11(1), pages 1-18, January.
    12. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    13. Liu, Yang & Chen, Xiaoyi & Wang, Xinhui & Fang, Yang & Zhang, Yin & Huang, Mengjun & Zhao, Hai, 2019. "The influence of different plant hormones on biomass and starch accumulation of duckweed: A renewable feedstock for bioethanol production," Renewable Energy, Elsevier, vol. 138(C), pages 659-665.
    14. Panchal, Tirth M. & Patel, Ankit & Chauhan, D.D. & Thomas, Merlin & Patel, Jigar V., 2017. "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 65-70.
    15. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    16. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    17. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    18. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    19. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    20. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:971-979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.