IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp769-780.html
   My bibliography  Save this article

Fluid dynamic study of anaerobic digester: optimization of mixing and geometric configuration by using response surface methodology and factorial design

Author

Listed:
  • Leonzio, Grazia

Abstract

Mixing is an important parameter in order to have an efficient anaerobic digestion. Computational fluid dynamics can provide a detailed modeling about the hydrodynamics and mixing of anaerobic digestion. In this research, a study about the fluid dynamic of anaerobic digester is carried out with the aim to find the best configuration that optimizes mixing. External recirculating pumps are used as mixing system. Respect to other works reported in literature, results obtained by simulations in COMSOL Multiphysics™ are used for factorial and response surface design. The effect of nozzles number for plane, the inlet angle of fluid, recirculation velocity, phase displacement between plans on average velocity are studied. Results show that the best configuration has four nozzles for plane, the inlet angle of fluid at 45°, recirculation velocity of 2 m/s with nozzles alignment. Response surface methodology is carried out finding a mathematical model of second order for average velocity: its optimal value is 0.25 m/s. The future construction of anaerobic digester will verify the obtained results.

Suggested Citation

  • Leonzio, Grazia, 2019. "Fluid dynamic study of anaerobic digester: optimization of mixing and geometric configuration by using response surface methodology and factorial design," Renewable Energy, Elsevier, vol. 136(C), pages 769-780.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:769-780
    DOI: 10.1016/j.renene.2018.12.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonzio, Grazia, 2018. "Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis," Renewable Energy, Elsevier, vol. 123(C), pages 578-589.
    2. Gómez, X. & Cuetos, M.J. & Cara, J. & Morán, A. & García, A.I., 2006. "Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes," Renewable Energy, Elsevier, vol. 31(12), pages 2017-2024.
    3. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    4. Alissara Reungsang & Sakchai Pattra & Sureewan Sittijunda, 2012. "Optimization of Key Factors Affecting Methane Production from Acidic Effluent Coming from the Sugarcane Juice Hydrogen Fermentation Process," Energies, MDPI, vol. 5(11), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chaozhong & Liu, Xu & Ding, Chenrong & Zhou, Xin & Xu, Yong & Gu, Xiaoli, 2023. "Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method," Renewable Energy, Elsevier, vol. 212(C), pages 430-442.
    2. Xiaojun Liu & Arnaud Coutu & Stéphane Mottelet & André Pauss & Thierry Ribeiro, 2023. "Overview of Numerical Simulation of Solid-State Anaerobic Digestion Considering Hydrodynamic Behaviors, Phenomena of Transfer, Biochemical Kinetics and Statistical Approaches," Energies, MDPI, vol. 16(3), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamani Abyaneh, Ehsan & Zarghami, Reza & Krühne, Ulrich & Rosinha Grundtvig, Inês P. & Ramin, Pedram & Mostoufi, Navid, 2022. "Mixing assessment of an industrial anaerobic digestion reactor using CFD," Renewable Energy, Elsevier, vol. 192(C), pages 537-549.
    2. Buta Singh & Narinder Singh & Zsolt Čonka & Michal Kolcun & Zoltán Siménfalvi & Zsolt Péter & Zoltán Szamosi, 2021. "Critical Analysis of Methods Adopted for Evaluation of Mixing Efficiency in an Anaerobic Digester," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    3. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    4. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2021. "Energy performance of an unmixed anaerobic digester with submerged solid waste: Effects of temperature distribution," Energy, Elsevier, vol. 231(C).
    5. Singh, Buta & Szamosi, Zoltán & Siménfalvi, Zoltán, 2019. "State of the art on mixing in an anaerobic digester: A review," Renewable Energy, Elsevier, vol. 141(C), pages 922-936.
    6. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    8. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    9. Duarte, M. Salomé & Sinisgalli, Erika & Cavaleiro, Ana J. & Bertin, Lorenzo & Alves, M. Madalena & Pereira, M. Alcina, 2021. "Intensification of methane production from waste frying oil in a biogas-lift bioreactor," Renewable Energy, Elsevier, vol. 168(C), pages 1141-1148.
    10. Mulka, Rafał & Szulczewski, Wiesław & Szlachta, Józef & Mulka, Mariusz, 2016. "Estimation of methane production for batch technology – A new approach," Renewable Energy, Elsevier, vol. 90(C), pages 440-449.
    11. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    12. Haorui Zhang & Jiaolin Li & Quanguo Zhang & Shengnan Zhu & Shuai Yang & Zhiping Zhang, 2020. "Effect of Substrate Concentration on Photo-Fermentation Bio-Hydrogen Production Process from Starch-Rich Agricultural Leftovers under Oscillation," Sustainability, MDPI, vol. 12(7), pages 1-8, March.
    13. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    14. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    15. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    16. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    17. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    19. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    20. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:769-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.