IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp1231-1244.html
   My bibliography  Save this article

Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels

Author

Listed:
  • Bala, Anju
  • Singh, Bijender

Abstract

Thermophilic microorganisms are ubiquitous in nature growing on wide varieties of substrates due to the secretion of thermostable enzymes which are useful in various biotechnological industries. Thermophiles produced high titres of cellulases and xylanases in both solid-state and submerged fermentations regulated by various physico-chemical factors. Purification of these hydrolytic enzymes has been carried out by combination of various chromatographic techniques to study their biochemical properties. The majority of xylanases and cellulases from thermophiles have optimum pH in the range of 4.5–9.0 with temperature optima at 50 to 80 °C. The molecular masses of xylanases and cellulases from thermophiles ranged from 21 to 78 kDa and 30–250 kDa, respectively. Genetic engineering studies have improved their production and properties for commercial applications. Thermostable enzymes from thermophiles have been utilized in production of different biofuels like ethanol, butanol, 2,3-butanediol and hydrogen. This review describes the production, characteristics, genetic engineering and potential biotechnological applications of cellulolytic and xylanolytic enzymes of thermophiles.

Suggested Citation

  • Bala, Anju & Singh, Bijender, 2019. "Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels," Renewable Energy, Elsevier, vol. 136(C), pages 1231-1244.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1231-1244
    DOI: 10.1016/j.renene.2018.09.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, Anju & Singh, Bijender, 2019. "Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production," Renewable Energy, Elsevier, vol. 130(C), pages 12-24.
    2. Stougie, Lydia & Tsalidis, Georgios A. & van der Kooi, Hedzer J. & Korevaar, Gijsbert, 2018. "Environmental and exergetic sustainability assessment of power generation from biomass," Renewable Energy, Elsevier, vol. 128(PB), pages 520-528.
    3. Pereira, Sandra C. & Maehara, Larissa & Machado, Cristina M.M. & Farinas, Cristiane S., 2016. "Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques," Renewable Energy, Elsevier, vol. 87(P1), pages 607-617.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Gallo & Rosanna Puopolo & Miriam Carbonaro & Emanuela Maresca & Gabriella Fiorentino, 2021. "Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering," IJERPH, MDPI, vol. 18(10), pages 1-24, May.
    2. Ilaria Finore & Ida Romano & Luigi Leone & Paola Di Donato & Barbara Nicolaus & Annarita Poli & Licia Lama, 2021. "Biomass Valorization: Sustainable Methods for the Production of Hemicellulolytic Catalysts from Thermoanaerobacterium thermostercoris strain BUFF," Resources, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    2. Catherine Lalman & Hirushie Karunathilake & Rajeev Ruparathna, 2023. "To Dispose or to Reuse? Analyzing the Life Cycle Impacts and Costs of Disposal, Sterilization, and Reuse of Electrophysiological Catheters," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Tang, Yuanjun & Dong, Jun & Li, Guoneng & Zheng, Youqu & Chi, Yong & Nzihou, Ange & Weiss-Hortala, Elsa & Ye, Chao, 2020. "Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China," Energy, Elsevier, vol. 205(C).
    4. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    5. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    6. Guoxian Cao & Chaoyang Guo & Hezhong Li, 2022. "Risk Analysis of Public–Private Partnership Waste-to-Energy Incineration Projects from the Perspective of Rural Revitalization," Sustainability, MDPI, vol. 14(13), pages 1-19, July.
    7. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    8. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
    9. Jun Li & Lixian Wang & Yong Chi & Zhaozhi Zhou & Yuanjun Tang & Hui Zhang, 2021. "Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective," IJERPH, MDPI, vol. 18(19), pages 1-16, October.
    10. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    11. Saša Igić & Dragana Bošković & Barbara Vujkov & Nemanja Igić & Todor Janić & Dalibor Jeličić & Vladica Ristić & Boris Dumnić, 2020. "Analysis of the Correlation between Combustion Products in Biomass Thermal Power Plant Using Association Rule Mining," Energies, MDPI, vol. 13(21), pages 1-13, October.
    12. Farias, Josiane Pinheiro & Okeke, Benedict C. & Ávila, Fernanda Dias De & Demarco, Carolina Faccio & Silva, Márcio Santos & Camargo, Flávio Anastácio de Oliveira & Menezes Bento, Fátima & Pieniz, Simo, 2023. "Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production," Renewable Energy, Elsevier, vol. 205(C), pages 174-184.
    13. Poolakkalody, Najya Jabeen & Ramesh, Kaviraj & Palliprath, Suchithra & Nittoor, Shima Namath & Santiago, Rogelio & Kabekkodu, Shama Prasada & Manisseri, Chithra, 2023. "Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield," Renewable Energy, Elsevier, vol. 209(C), pages 420-430.
    14. Xingyu Zhang & Liang Chen & Yubing Gao & Jinzhu Hu & Jun Yang & Manchao He, 2019. "Study of An Innovative Approach of Roof Presplitting for Gob-Side Entry Retaining in Longwall Coal Mining," Energies, MDPI, vol. 12(17), pages 1-16, August.
    15. Wei Li & Desheng Xue & Xu Huang, 2018. "The Role of Manufacturing in Sustainable Economic Development: A Case of Guangzhou, China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    16. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    17. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    18. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    19. Yakaboylu, Gunes A. & Jiang, Changle & Yumak, Tugrul & Zondlo, John W. & Wang, Jingxin & Sabolsky, Edward M., 2021. "Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors," Renewable Energy, Elsevier, vol. 163(C), pages 276-287.
    20. Anna Stoppato & Alberto Benato, 2020. "Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler," Energies, MDPI, vol. 13(7), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1231-1244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.