IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp485-495.html
   My bibliography  Save this article

Design and construction of a new dual CHP-type renewable energy power plant based on an improved parabolic trough solar collector and a biofuel generator

Author

Listed:
  • Zahedi, Alireza
  • Timasi, Hossein
  • Kasaeian, Alibakhsh
  • Mirnezami, Seyed Abolfazl

Abstract

A dual hybrid system, including an improved parabolic trough solar collector (CSP) and a biodiesel generator was designed and constructed in this study. The biodiesel was produced from 1st and 3rd generations of biofuel by means of the heat loss of CSP. In order to increase the efficiency of heat transfer of CSP with a working fluid, an optimization was performed with some nanoparticles in concentrate range of 1500–3500 ppm. The results showed that thermal conductivity coefficient of the fluid increased by enhancing the volume percentage. This led to an increase in the outlet temperature from the collector and caused better efficiency of CSP and therefore a better performance of the biodiesel transesterification reactor. However, the best working fluid was consisted of a water-based CuO nanofluid (efficiency of 66.42% and the rate of temperature of 1311.1 °C/min). Due to different outlet temperature, various experiments were conducted to produce fuel from rapeseed oil. The best efficiency results (74.54%) as well as the lowest finished costs (69 cents) occurred at temperature of 60 °C. Then, biodiesel was produced from chlorella oil at this temperature with an efficiency of 81.4% and total production cost of 143 ¢.

Suggested Citation

  • Zahedi, Alireza & Timasi, Hossein & Kasaeian, Alibakhsh & Mirnezami, Seyed Abolfazl, 2019. "Design and construction of a new dual CHP-type renewable energy power plant based on an improved parabolic trough solar collector and a biofuel generator," Renewable Energy, Elsevier, vol. 135(C), pages 485-495.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:485-495
    DOI: 10.1016/j.renene.2018.11.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minea, Alina Adriana & El-Maghlany, Wael M., 2018. "Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: Recent findings and numerical comparison," Renewable Energy, Elsevier, vol. 120(C), pages 350-364.
    2. Chasapis, D. & Drosou, V. & Papamechael, I. & Aidonis, A. & Blanchard, R., 2008. "Monitoring and operational results of a hybrid solar-biomass heating system," Renewable Energy, Elsevier, vol. 33(8), pages 1759-1767.
    3. Nejad, Ardeshir Shayan & Zahedi, Ali Reza, 2018. "Optimization of biodiesel production as a clean fuel for thermal power plants using renewable energy source," Renewable Energy, Elsevier, vol. 119(C), pages 365-374.
    4. de Risi, A. & Milanese, M. & Laforgia, D., 2013. "Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids," Renewable Energy, Elsevier, vol. 58(C), pages 134-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirnezami, Seyed Abolfazl & Zahedi, Alireza & Shayan Nejad, Ardeshir, 2020. "Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel," Energy, Elsevier, vol. 202(C).
    2. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    3. Tafavogh, Mahyar & Zahedi, Alireza, 2021. "Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system," Renewable Energy, Elsevier, vol. 169(C), pages 358-378.
    4. Tafavogh, Mahyar & Zahedi, Alireza, 2022. "Improving the performance of home heating system with the help of optimally produced heat storage nanocapsules," Renewable Energy, Elsevier, vol. 181(C), pages 1276-1293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirnezami, Seyed Abolfazl & Zahedi, Alireza & Shayan Nejad, Ardeshir, 2020. "Thermal optimization of a novel solar/hydro/biomass hybrid renewable system for production of low-cost, high-yield, and environmental-friendly biodiesel," Energy, Elsevier, vol. 202(C).
    2. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    5. Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
    6. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    7. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    8. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    9. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    10. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Elkelawy, Medhat & Etaiw, Safaa El-din H. & Alm-Eldin Bastawissi, Hagar & Ayad, Mohamed I. & Radwan, Ahmed Mohamed & Dawood, Mohamed M., 2021. "Diesel/ biodiesel /silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine," Energy, Elsevier, vol. 216(C).
    12. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    13. Mohammad Zadeh, P. & Sokhansefat, T. & Kasaeian, A.B. & Kowsary, F. & Akbarzadeh, A., 2015. "Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid," Energy, Elsevier, vol. 82(C), pages 857-864.
    14. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    15. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    16. Sonia Darabee & Mohammad Hamdan & Hadi Daghari & Salman Ajib, 2022. "Enrichment of the Usage of Solar Purification of Water by Employing Hybrid Nanofluid Mixtures," Energies, MDPI, vol. 15(16), pages 1-7, August.
    17. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    18. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    19. Alashkar, Adnan & Gadalla, Mohamed, 2017. "Thermo-economic analysis of an integrated solar power generation system using nanofluids," Applied Energy, Elsevier, vol. 191(C), pages 469-491.
    20. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:485-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.