IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp1133-1143.html
   My bibliography  Save this article

Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe

Author

Listed:
  • Zhang, Shiwei
  • Chen, Jieling
  • Sun, Yalong
  • Li, Jie
  • Zeng, Jian
  • Yuan, Wei
  • Tang, Yong

Abstract

This study proposes a novel ultra-thin aluminum flat heat pipe with thickness of 1.5 mm for the first time in order to satisfy the ever increasing requirements for cost-effective, physically compact and highly efficient thermal management solutions. The extruded aluminum tube contains multiple separate micro cavities that work as independent micro heat pipes and a two-level compressing process is applied to flatten the tube to the ideal thickness. Sintered aluminum fibers and aluminum fiber meshes with surface treatment are inserted into each cavity of the ultra-thin heat pipe as the extra wicks for comparison. The thermal response characteristics of the fabricated aluminum heat pipes, including the temperature uniformity, thermal resistance, and effects of wick structure and inclination angles, are fully investigated. Under large inclination angle (90°), the smooth heat pipe without any extra wick performs lower temperature difference, lower thermal resistance, and higher heat transport capacity compared to that with aluminum fiber wick whereas the heat pipes with wicks present superiority under smaller inclination angles (60° and 30°) due to the liquid backflow enhancement. Besides, comparative study also shows that wick structure optimization holds the potential to improve the thermal performance of this ultra-thin two-phase device.

Suggested Citation

  • Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1133-1143
    DOI: 10.1016/j.renene.2018.12.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    2. Ozsoy, Ahmet & Corumlu, Vahit, 2018. "Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications," Renewable Energy, Elsevier, vol. 122(C), pages 26-34.
    3. Chen, Haiping & Zhang, Heng & Li, Mingjie & Liu, Haowen & Huang, Jiguang, 2018. "Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array," Renewable Energy, Elsevier, vol. 115(C), pages 773-782.
    4. Ersöz, Mustafa Ali, 2016. "Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe," Renewable Energy, Elsevier, vol. 96(PA), pages 244-256.
    5. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    6. Marcinichen, Jackson Braz & Olivier, Jonathan A. & Oliveira, Vinicius de & Thome, John R., 2012. "A review of on-chip micro-evaporation: Experimental evaluation of liquid pumping and vapor compression driven cooling systems and control," Applied Energy, Elsevier, vol. 92(C), pages 147-161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    3. Zhong, Guisheng & Tang, Yong & Ding, Xinrui & Rao, Longshi & Chen, Gong & Tang, Kairui & Yuan, Wei & Li, Zongtao, 2020. "Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions," Renewable Energy, Elsevier, vol. 149(C), pages 1032-1039.
    4. Xiao, Biao & Deng, Weizhong & Ma, Zhengyuan & He, Song & He, Lin & Li, Xiang & Yuan, Fang & Liu, Wei & Liu, Zhichun, 2020. "Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling," Renewable Energy, Elsevier, vol. 147(P1), pages 239-248.
    5. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    6. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    7. Yuqi Han & Weilin Zhuge & Jie Peng & Yuping Qian & Yangjun Zhang, 2023. "Numerical Investigation on Internal Structures of Ultra-Thin Heat Pipes for PEM Fuel Cells Cooling," Energies, MDPI, vol. 16(3), pages 1-22, January.
    8. Xiaochen Zhang & Han Zhao & Jing Li & Fengyu Zhang & Yue Zhang & Hongyu Yan & Zhihao Niu & David Gerada & He Zhang, 2022. "Experimental Investigation of Heat Pipe Inclination Angle Effect on Temperature Nonuniformity in Electrical Machines," Energies, MDPI, vol. 16(1), pages 1-14, December.
    9. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    10. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Yu, Cairui & Shen, Dongmei & He, Wei & Hu, Zhongting & Zhang, Sheng & Chu, Wenfeng, 2021. "Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology," Renewable Energy, Elsevier, vol. 178(C), pages 1057-1069.
    12. Zhou, Yuekuan, 2022. "Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate," Renewable Energy, Elsevier, vol. 199(C), pages 204-225.
    13. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    4. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    5. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    7. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    8. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    9. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    10. Jagirdar, Mrinal & Lee, Poh Seng, 2017. "A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal," Applied Energy, Elsevier, vol. 185(P2), pages 2232-2244.
    11. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    12. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    13. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    14. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    15. Chen, Gong & Tang, Yong & Duan, Longhua & Tang, Heng & Zhong, Guisheng & Wan, Zhenping & Zhang, Shiwei & Fu, Ting, 2020. "Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors," Renewable Energy, Elsevier, vol. 146(C), pages 2234-2242.
    16. Chandan, & Dey, Sumon & Iqbal, S.Md. & Reddy, K.S. & Pesala, Bala, 2021. "Numerical modeling and performance assessment of elongated compound parabolic concentrator based LCPVT system," Renewable Energy, Elsevier, vol. 167(C), pages 199-216.
    17. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
    18. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    19. Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
    20. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1133-1143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.