IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp790-801.html
   My bibliography  Save this article

Flexible multibody dynamics modelling of point-absorber wave energy converters

Author

Listed:
  • Wang, Lin
  • Kolios, Athanasios
  • Cui, Lin
  • Sheng, Qihu

Abstract

As an inexhaustible and environmentally-friendly energy resource, ocean wave power, which is extracted from ocean waves through WECs (wave energy converters), is highly valued by coastal countries. Compared to other types of WECs, point-absorber WECs, the main body of which can be fixed on a platform (e.g. ship), save on installation costs and therefore have concentrated significant interest among researchers and technology developers. In the development of point-absorber WECs, it is crucial to develop a reliable structural model to accurately predict the structural dynamic responses of WECs subjected to wave loadings. In this work, a FMBD (flexible multibody dynamics) model, which is a combination of MBD (multibody dynamics) and FEA (finite element analysis), has been developed for point-absorber WECs. The FMBD model has been applied to the structural modelling of the NOTC (National Ocean Technology Centre) 10 kW multiple-point-absorber WEC. The floater arm tip displacement and velocity obtained from the FMBD model are validated against the values obtained from an analytical model, which is also developed in this work. The results from the FMBD model show reasonable agreement with those from the analytical model, with a relative difference of 10.1% at the maximum value of the floater arm tip displacement. The FMBD model is further used to calculate the stress distributions, fatigue life, deformations, modal frequencies and modal shapes of the structure. The results indicate that WECs are prone to experience fatigue failure, with the shortest fatigue life (2 years) observed in the floater arm. The FMBD model developed in this work is demonstrated to be capable of accurately modelling point-absorber WECs, providing valuable information for designers to further optimise the structure and assess the reliability of WECs.

Suggested Citation

  • Wang, Lin & Kolios, Athanasios & Cui, Lin & Sheng, Qihu, 2018. "Flexible multibody dynamics modelling of point-absorber wave energy converters," Renewable Energy, Elsevier, vol. 127(C), pages 790-801.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:790-801
    DOI: 10.1016/j.renene.2018.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koroneos, Christopher & Spachos, Thomas & Moussiopoulos, Nikolaos, 2003. "Exergy analysis of renewable energy sources," Renewable Energy, Elsevier, vol. 28(2), pages 295-310.
    2. Bucchi, Andrea & Hearn, Grant E., 2016. "Analysis of the SEA-OWC-Clam wave energy device part B: Structural integrity analysis," Renewable Energy, Elsevier, vol. 99(C), pages 253-269.
    3. Morris, C.E. & O'Doherty, D.M. & O'Doherty, T. & Mason-Jones, A., 2016. "Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation," Renewable Energy, Elsevier, vol. 88(C), pages 30-39.
    4. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    5. Grogan, D.M. & Leen, S.B. & Kennedy, C.R. & Ó Brádaigh, C.M., 2013. "Design of composite tidal turbine blades," Renewable Energy, Elsevier, vol. 57(C), pages 151-162.
    6. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    7. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongkuang & Zhou, Yu & Chen, Weixing & Zhang, Weidong & Gao, Feng, 2022. "Design, modeling and numerical analysis of a WEC-Glider (WEG)," Renewable Energy, Elsevier, vol. 188(C), pages 911-921.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    2. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    3. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    4. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    6. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    7. Mujahid Badshah & Saeed Badshah & Kushsairy Kadir, 2018. "Fluid Structure Interaction Modelling of Tidal Turbine Performance and Structural Loads in a Velocity Shear Environment," Energies, MDPI, vol. 11(7), pages 1-13, July.
    8. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    9. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    10. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    11. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    12. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    13. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    14. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    15. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    16. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    17. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    18. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    19. Kennedy, Ciaran R. & Jaksic, Vesna & Leen, Sean B. & Brádaigh, Conchúr M.Ó., 2018. "Fatigue life of pitch- and stall-regulated composite tidal turbine blades," Renewable Energy, Elsevier, vol. 121(C), pages 688-699.
    20. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:790-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.