IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp368-376.html
   My bibliography  Save this article

Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode

Author

Listed:
  • Hao, Yue
  • Tan, Lei

Abstract

Transient cavitating flows of a mixedflow PAT (pump as turbine) at pump mode are investigated experimentally and numerically. Radial force on principal axis is recorded and compared between pump with symmetrical and unsymmetrical tip clearance. Numerical simulation with improved cavitation model by modifying the vapor pressure is conducted, and the simulation results agree well with the experiments. Tip clearance has great influence on pump cavitation performance. The pump energy performance will deteriorate with tip clearance increasing. In addition, in comparison with the symmetrical tip clearance, the unsymmetrical tip clearance makes the pump cavitation performance worse. As the cavitation develops, the unsymmetrical tip clearance simultaneously influences the magnitude and direction of radial force, while the symmetrical tip clearance only influences the magnitude of radial force. The dominant frequencies of radial force of symmetrical and unsymmetrical tip clearances are related to the blade number and guide vane number, respectively. The maximum amplitude of force fluctuation for unsymmetrical tip clearance is 7 times that for symmetrical tip clearance.

Suggested Citation

  • Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:368-376
    DOI: 10.1016/j.renene.2018.04.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    2. Yabin Liu & Lei Tan & Yue Hao & Yun Xu, 2017. "Energy Performance and Flow Patterns of a Mixed-Flow Pump with Different Tip Clearance Sizes," Energies, MDPI, vol. 10(2), pages 1-15, February.
    3. Yue Hao & Lei Tan & Yabin Liu & Yun Xu & Jinsong Zhang & Baoshan Zhu, 2017. "Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances," Energies, MDPI, vol. 10(1), pages 1-13, January.
    4. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    5. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    6. Nautiyal, Himanshu & Varun & Kumar, Anoop, 2010. "Reverse running pumps analytical, experimental and computational study: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2059-2067, September.
    7. Thakker, A. & Dhanasekaran, T.S., 2004. "Computed effects of tip clearance on performance of impulse turbine for wave energy conversion," Renewable Energy, Elsevier, vol. 29(4), pages 529-547.
    8. Oreste Fecarotta & Costanza Aricò & Armando Carravetta & Riccardo Martino & Helena Ramos, 2015. "Hydropower Potential in Water Distribution Networks: Pressure Control by PATs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 699-714, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    2. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    3. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    4. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    5. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    6. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    7. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    8. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    9. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    10. Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
    11. Yu Song & Honggang Fan & Wei Zhang & Zhifeng Xie, 2019. "Flow Characteristics in Volute of a Double-Suction Centrifugal Pump with Different Impeller Arrangements," Energies, MDPI, vol. 12(4), pages 1-15, February.
    12. Yabin Liu & Lei Tan & Ming Liu & Yue Hao & Yun Xu, 2017. "Influence of Prewhirl Angle and Axial Distance on Energy Performance and Pressure Fluctuation for a Centrifugal Pump with Inlet Guide Vanes," Energies, MDPI, vol. 10(5), pages 1-14, May.
    13. Jinsong Zhang & Lei Tan, 2018. "Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions," Energies, MDPI, vol. 11(5), pages 1-14, May.
    14. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    15. Simin Shen & Zhongdong Qian & Bin Ji, 2019. "Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory," Energies, MDPI, vol. 12(21), pages 1-22, October.
    16. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    17. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    18. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    19. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    20. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:368-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.