IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp88-97.html
   My bibliography  Save this article

Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility

Author

Listed:
  • Morone, Amruta
  • Sharma, Ganesh
  • Sharma, Abhinav
  • Chakrabarti, Tapan
  • Pandey, R.A.

Abstract

Rice straw, a renewable feedstock, is recalcitrant and its degree of polymerization makes pretreatment obligatory for subsequent bioconversion. The present study explores an advanced oxidation process i.e. Alkaline Wet Air Oxidation (AWAO) as a pretreatment for rice straw and scrutinizes the effect of operation parameters on cellulose recovery, hemicellulose solubilization and lignin removal through Response Surface Methodology (RSM). AWAO resulted in 68–90% cellulose recovery, 67–87% hemicellulose solubilization and 32–66% lignin removal while generating limited inhibitors. AWAO caused oxidative delignification, hemicellulose deacetylation and cleavage of carbohydrate-lignin linkages as revealed by FT-IR, thereby improving cellulose accessibility indicated by 42–89% enzymatic cellulose convertibility (%ECC) or % cellulose conversion. The findings of the present study indicate minimization of chemical input and absence of potent inhibitors in the liquor which collectively implies reduction in freshwater requirements, minimization of waste generation and its treatment cost.

Suggested Citation

  • Morone, Amruta & Sharma, Ganesh & Sharma, Abhinav & Chakrabarti, Tapan & Pandey, R.A., 2018. "Evaluation, applicability and optimization of advanced oxidation process for pretreatment of rice straw and its effect on cellulose digestibility," Renewable Energy, Elsevier, vol. 120(C), pages 88-97.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:88-97
    DOI: 10.1016/j.renene.2017.12.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ranjan, Amrita & Khanna, Swati & Moholkar, V.S., 2013. "Feasibility of rice straw as alternate substrate for biobutanol production," Applied Energy, Elsevier, vol. 103(C), pages 32-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
    2. Li, Zhan-Ku & Cheng, Jin-Yuan & Yan, Hong-Lei & Yan, Jing-Chong & Lei, Zhi-Ping & Ren, Shi-Biao & Wang, Zhi-Cai & Kang, Shi-Gang & Shui, Heng-Fu, 2021. "Pretreatment of sweet sorghum stalk with aqueous hydrogen peroxide for enhancing methanolysis and property of the bio-oil," Renewable Energy, Elsevier, vol. 175(C), pages 1127-1136.
    3. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    4. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    5. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    6. Xiaorui Yang & Jing Zhao & Jinhua Liang & Jianliang Zhu, 2020. "Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions," Sustainability, MDPI, vol. 12(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    3. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    4. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    5. Avinash Bharti & Kunwar Paritosh & Venkata Ravibabu Mandla & Aakash Chawade & Vivekanand Vivekanand, 2021. "GIS Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    7. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    8. Harde, Shirish M. & Jadhav, Swati B. & Bankar, Sandip B. & Ojamo, Heikki & Granström, Tom & Singhal, Rekha S. & Survase, Shrikant A., 2016. "Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii," Renewable Energy, Elsevier, vol. 86(C), pages 594-601.
    9. Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.
    10. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Gottumukkala, Lalitha Devi & Haigh, Kate & Görgens, Johann, 2017. "Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 963-973.
    12. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    13. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    14. Barakat, Abdellatif & Monlau, Florian & Solhy, Abderrahim & Carrere, Hélène, 2015. "Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement," Applied Energy, Elsevier, vol. 142(C), pages 240-246.
    15. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    16. Pazuch, Felix Augusto & Nogueira, Carlos Eduardo Camargo & Souza, Samuel Nelson Melegari & Micuanski, Viviane Cavaler & Friedrich, Leandro & Lenz, Anderson Miguel, 2017. "Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 34-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:88-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.