IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp262-281.html
   My bibliography  Save this article

Analysis and performance assessment of a novel ORC based multi-generation system for power, distilled water and heat

Author

Listed:
  • Yari, Mortaza
  • Ariyanfar, Leyli
  • Aghdam, Ebrahim Abdi

Abstract

In this paper, the coupling of a Humidification-Dehumidification Desalination (HDD) with an Organic Rankine Cycle (ORC) as a multi-generation system is proposed in two scenarios to generate power, distilled water and heat. The system is investigated from thermodynamic and economic viewpoints, and for achieving the best results, four organic fluids are examined in the ORC. In the first scenario, the outlet water of the ORC and HDD condensers are mixed and the flow enters to the HDD, as feed water. The heat of distilled water is absorbed by a water flow in a heat exchanger and mixed with the brine of HDD to heat production. In the second scenario, just the outlet water of the ORC condenser enters to the HDD, as feed water. The heat of distilled water is absorbed by a water flow in a heat exchanger and mixed with the brine of HDD and the outlet flow of the HDD condenser. The proposed multi-generation system works without external energy (heat). Results show that within four working fluids n-Octane has the best performance and scenario (II) produce more distilled water with higher recovery rate and lower cost. Also, scenario (II) produce more amount of heating flow, although with lower temperature and higher cost. Both of proposed scenarios have optimized in order to minimizing cost of distilled water; and scenario (I), based on its structure, has optimized to maximizing distilled water production and its recovery rate. Also, a multi-objective optimization is performed for both scenarios.

Suggested Citation

  • Yari, Mortaza & Ariyanfar, Leyli & Aghdam, Ebrahim Abdi, 2018. "Analysis and performance assessment of a novel ORC based multi-generation system for power, distilled water and heat," Renewable Energy, Elsevier, vol. 119(C), pages 262-281.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:262-281
    DOI: 10.1016/j.renene.2017.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811731217X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, Mohsen & Nemati, Arash & ghavimi, Alireza & Yari, Mortaza, 2016. "Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures," Energy, Elsevier, vol. 109(C), pages 791-802.
    2. Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
    3. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    4. Sahoo, U. & Kumar, R. & Pant, P.C. & Chaudhury, R., 2015. "Scope and sustainability of hybrid solar–biomass power plant with cooling, desalination in polygeneration process in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 304-316.
    5. Liu, Bo & Rivière, Philippe & Coquelet, Christophe & Gicquel, Renaud & David, Franck, 2012. "Investigation of a two stage Rankine cycle for electric power plants," Applied Energy, Elsevier, vol. 100(C), pages 285-294.
    6. Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
    7. Li, Jing & Pei, Gang & Ji, Jie & Bai, Xiaoman & Li, Pengcheng & Xia, Lijun, 2014. "Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications," Energy, Elsevier, vol. 77(C), pages 579-590.
    8. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    9. Habka, Muhsen & Ajib, Salman, 2015. "Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration," Applied Energy, Elsevier, vol. 154(C), pages 567-576.
    10. Kabeel, A.E. & Elmaaty, Talal Abou & El-Said, Emad M.S., 2013. "Economic analysis of a small-scale hybrid air HDH–SSF (humidification and dehumidification–water flashing evaporation) desalination plant," Energy, Elsevier, vol. 53(C), pages 306-311.
    11. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    12. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    13. Qiu, K. & Hayden, A.C.S., 2012. "Integrated thermoelectric and organic Rankine cycles for micro-CHP systems," Applied Energy, Elsevier, vol. 97(C), pages 667-672.
    14. Karellas, Sotirios & Terzis, Konstantinos & Manolakos, Dimitrios, 2011. "Investigation of an autonomous hybrid solar thermal ORC–PV RO desalination system. The Chalki island case," Renewable Energy, Elsevier, vol. 36(2), pages 583-590.
    15. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & González, Manuel & Mota-Babiloni, Adrián, 2015. "Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources," Energy, Elsevier, vol. 82(C), pages 269-276.
    16. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    17. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    18. Kosmadakis, G. & Manolakos, D. & Papadakis, G., 2010. "Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination," Renewable Energy, Elsevier, vol. 35(5), pages 989-996.
    19. Chen, Qicheng & Xu, Jinliang & Chen, Hongxia, 2012. "A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source," Applied Energy, Elsevier, vol. 98(C), pages 562-573.
    20. Al-Weshahi, Mohammed A. & Anderson, Alexander & Tian, Guohong, 2014. "Organic Rankine Cycle recovering stage heat from MSF desalination distillate water," Applied Energy, Elsevier, vol. 130(C), pages 738-747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Biao & Chang, Huawei & He, Lin & Zhao, Shunan & Shu, Shuiming, 2020. "Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a," Renewable Energy, Elsevier, vol. 147(P1), pages 2013-2023.
    2. Mouaky, Ammar & Rachek, Adil, 2020. "Thermodynamic and thermo-economic assessment of a hybrid solar/biomass polygeneration system under the semi-arid climate conditions," Renewable Energy, Elsevier, vol. 156(C), pages 14-30.
    3. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
    4. Saeed Alqaed & Ali Fouda & Hassan F. Elattar & Jawed Mustafa & Fahad Awjah Almehmadi & Hassanein A. Refaey & Mathkar A. Alharthi, 2022. "Performance Evaluation of a Solar Heat-Driven Poly-Generation System for Residential Buildings Using Various Arrangements of Heat Recovery Units," Energies, MDPI, vol. 15(22), pages 1-26, November.
    5. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    6. T. M. I. Mahlia & H. Syaheed & A. E. Pg Abas & F. Kusumo & A. H. Shamsuddin & Hwai Chyuan Ong & M. R. Bilad, 2019. "Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances," Energies, MDPI, vol. 12(15), pages 1-19, July.
    7. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    8. Naminezhad, Alireza & Mehregan, Mahmood, 2022. "Energy and exergy analyses of a hybrid system integrating solar-driven organic Rankine cycle, multi-effect distillation, and reverse osmosis desalination systems," Renewable Energy, Elsevier, vol. 185(C), pages 888-903.
    9. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Fahad Awjah Almehmadi & H. F. Elattar & A. Fouda & Saeed Alqaed & Jawed Mustafa & Mathkar A. Alharthi & H. A. Refaey, 2022. "Energy Performance Assessment of a Novel Solar Poly-Generation System Using Various ORC Working Fluids in Residential Buildings," Energies, MDPI, vol. 15(21), pages 1-25, November.
    11. Tlili, Iskander & Osman, M. & Alarifi, I. & Belmabrouk, H. & Shafee, Ahmad & Li, Zhixiong, 2019. "Performance enhancement of a multi-effect desalination plant: A thermodynamic investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Uche, J. & Muzás, A. & Acevedo, L.E. & Usón, S. & Martínez, A. & Bayod, A.A., 2020. "Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques," Renewable Energy, Elsevier, vol. 155(C), pages 407-419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    2. Li, Tailu & Zhang, Zhigang & Lu, Jian & Yang, Junlan & Hu, Yujie, 2015. "Two-stage evaporation strategy to improve system performance for organic Rankine cycle," Applied Energy, Elsevier, vol. 150(C), pages 323-334.
    3. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    4. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    5. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    6. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    7. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    8. Li, Tailu & Yuan, Zhenhe & Li, Wei & Yang, Junlan & Zhu, Jialing, 2016. "Strengthening mechanisms of two-stage evaporation strategy on system performance for organic Rankine cycle," Energy, Elsevier, vol. 101(C), pages 532-540.
    9. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    10. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    11. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
    12. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    13. Manju, S. & Sagar, Netramani, 2017. "Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 594-609.
    14. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    15. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    16. Manente, Giovanni & Da Lio, Luca & Lazzaretto, Andrea, 2016. "Influence of axial turbine efficiency maps on the performance of subcritical and supercritical Organic Rankine Cycle systems," Energy, Elsevier, vol. 107(C), pages 761-772.
    17. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    18. Sadeghi, Mohsen & Nemati, Arash & ghavimi, Alireza & Yari, Mortaza, 2016. "Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures," Energy, Elsevier, vol. 109(C), pages 791-802.
    19. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    20. Li, Tailu & Wang, Qiulin & Zhu, Jialing & Hu, Kaiyong & Fu, Wencheng, 2015. "Thermodynamic optimization of organic Rankine cycle using two-stage evaporation," Renewable Energy, Elsevier, vol. 75(C), pages 654-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:262-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.