IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp217-225.html
   My bibliography  Save this article

The comparative analysis on thermal storage systems for solar power with direct steam generation

Author

Listed:
  • Guo, Jiangfeng
  • Huai, Xiulan
  • Cheng, Keyong

Abstract

Two sensible heat storage systems and two latent heat storage systems, in which liquid lead-bismuth eutectic alloy (LBE) is selected as sensible heat storage medium and sodium nitrate is selected as phase change storage material, are investigated for concentrated solar power (CSP) with direct steam generation (DSG) in the present work. The temperature pinch point likely occurs in sensible heat storage system, which restricts the optimization space. The temperature difference distributes more uniformly in latent heat storage system than in sensible heat storage system, and the outlet temperature of steam is far higher in latent heat storage system than in sensible heat storage system. The exergy efficiency is more two times in latent heat storage system than in sensible heat storage system. The three-tank latent heat storage system has the most flexible and effective performance among the four storage systems.

Suggested Citation

  • Guo, Jiangfeng & Huai, Xiulan & Cheng, Keyong, 2018. "The comparative analysis on thermal storage systems for solar power with direct steam generation," Renewable Energy, Elsevier, vol. 115(C), pages 217-225.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:217-225
    DOI: 10.1016/j.renene.2017.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian, Yongfang & Falcoz, Quentin & Neveu, Pierre & Bai, Fengwu & Wang, Yan & Wang, Zhifeng, 2015. "Design and optimization of solid thermal energy storage modules for solar thermal power plant applications," Applied Energy, Elsevier, vol. 139(C), pages 30-42.
    2. Blanco-Rodríguez, P. & Rodríguez-Aseguinolaza, J. & Risueño, E. & Tello, M., 2014. "Thermophysical characterization of Mg–51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications," Energy, Elsevier, vol. 72(C), pages 414-420.
    3. Guo, Jiangfeng & Huai, Xiulan, 2013. "Thermodynamic analysis of lead–bismuth eutectic turbulent flow in a straight tube," Energy, Elsevier, vol. 57(C), pages 600-606.
    4. Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
    5. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengyue Zhu & Ruihao Bian & Yajun Deng & Bo Yu & Dongliang Sun, 2023. "Multi-Objective Optimization of Graded Thermal Storage System for Direct Steam Generation with Dish Concentrators," Energies, MDPI, vol. 16(5), pages 1-21, March.
    2. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    3. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    4. Yu, Qiang & Li, Xiaolei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, H.J. & Zhao, C.Y., 2015. "Thermodynamic analysis and optimization of cascaded latent heat storage system for energy efficient utilization," Energy, Elsevier, vol. 90(P2), pages 1662-1673.
    2. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    3. Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
    4. Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Akiyama, Tomohiro & Nomura, Takahiro, 2020. "Fabrication of heat storage pellets composed of microencapsulated phase change material for high-temperature applications," Applied Energy, Elsevier, vol. 265(C).
    5. Gutierrez, Andrea & Miró, Laia & Gil, Antoni & Rodríguez-Aseguinolaza, Javier & Barreneche, Camila & Calvet, Nicolas & Py, Xavier & Inés Fernández, A. & Grágeda, Mario & Ushak, Svetlana & Cabeza, Luis, 2016. "Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 763-783.
    6. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    8. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    9. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    10. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    11. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    14. Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
    15. Bąk, Agnieszka & Pławecka, Kinga & Bazan, Patrycja & Łach, Michał, 2023. "Influence of the addition of phase change materials on thermal insulation properties of foamed geopolymer structures based on fly ash," Energy, Elsevier, vol. 278(C).
    16. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    17. Gunjo, Dawit Gudeta & Jena, Smruti Ranjan & Mahanta, Pinakeswar & Robi, P.S., 2018. "Melting enhancement of a latent heat storage with dispersed Cu, CuO and Al2O3 nanoparticles for solar thermal application," Renewable Energy, Elsevier, vol. 121(C), pages 652-665.
    18. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    19. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    20. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:217-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.