IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1177-1183.html
   My bibliography  Save this article

Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells

Author

Listed:
  • Xiao, Benyi
  • Chen, Xia
  • Han, Yunping
  • Liu, Junxin
  • Guo, Xuesong

Abstract

Batch experiments were conducted to study bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline-pretreated sludge in single-chamber membrane-free microbial electrolysis cells (MECs) with different applied voltage. Experimental results showed bioelectrochemical method could be combined with thermal-alkaline pretreatment to enhance anaerobic digestion of sludge. The methane productions of thermal-alkaline pretreated sludge increased by 20.0%–79.3% when applied voltage was 0.6–1.8 V. The optimal applied voltage was determined as 1.8 V. Water electrolysis did not occur during test under these applied voltages. The removal rates of SCOD and sludge VSS were increased by the applied voltages, with enhanced rates of 2.6–27.6% and 17.1–51.3%, respectively. These applied voltages could enhance the growth of hydrogenotrophic methanogens and inhibit a portion of acetoclastic methanogens. High voltage (up to 1.8 V) was required to produce more methane and reduce more sludge in anaerobic digestion of thermal-alkaline-pretreated sludge when the electrodes of MECs were constructed with special material (Ti/Ru alloy) with a large distance (2 cm).

Suggested Citation

  • Xiao, Benyi & Chen, Xia & Han, Yunping & Liu, Junxin & Guo, Xuesong, 2018. "Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells," Renewable Energy, Elsevier, vol. 115(C), pages 1177-1183.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1177-1183
    DOI: 10.1016/j.renene.2017.06.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhen, Guangyin & Lu, Xueqin & Kobayashi, Takuro & Li, Yu-You & Xu, Kaiqin & Zhao, Youcai, 2015. "Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis," Applied Energy, Elsevier, vol. 148(C), pages 78-86.
    2. Liu, Wenzong & Cai, Weiwei & Guo, Zechong & Wang, Ling & Yang, Chunxue & Varrone, Cristiano & Wang, Aijie, 2016. "Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production," Renewable Energy, Elsevier, vol. 91(C), pages 334-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    2. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    3. Shabib, Ahmad & Abdallah, Mohamed & Shanableh, Abdallah & Sartaj, Majid, 2022. "Effect of substrates and voltages on the performance of bio-electrochemical anaerobic digestion," Renewable Energy, Elsevier, vol. 198(C), pages 16-27.
    4. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    5. Xu, Xi-Jun & Wang, Wan-Qiong & Chen, Chuan & Xie, Peng & Liu, Wen-Zong & Zhou, Xu & Wang, Xue-Ting & Yuan, Ye & Wang, Ai-Jie & Lee, Duu-Jong & Yuan, Yi-Xing & Ren, Nan-Qi, 2020. "The effect of PBS on methane production in combined MEC-AD system fed with alkaline pretreated sewage sludge," Renewable Energy, Elsevier, vol. 152(C), pages 229-236.
    6. Kovalev, Andrey A. & Kovalev, Dmitriy A. & Zhuravleva, Elena A. & Katraeva, Inna V. & Panchenko, Vladimir & Fiore, Ugo & Litti, Yuri V., 2022. "Two-stage anaerobic digestion with direct electric stimulation of methanogenesis: The effect of a physical barrier to retain biomass on the surface of a carbon cloth-based biocathode," Renewable Energy, Elsevier, vol. 181(C), pages 966-977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater," Renewable Energy, Elsevier, vol. 146(C), pages 460-468.
    2. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    3. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    4. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    5. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    6. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    7. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Cai, Weiwei & Zhang, Zhaojing & Ren, Ge & Shen, Qiuxuan & Hou, Yanan & Ma, Anzhou & Deng, Ye & Wang, Aijie & Liu, Wenzong, 2016. "Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells," Applied Energy, Elsevier, vol. 183(C), pages 1133-1141.
    9. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    10. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    11. Ajayi-Banji, A.A. & Sunoj, S. & Igathinathane, C. & Rahman, S., 2021. "Kinetic studies of alkaline-pretreated corn stover co-digested with upset dairy manure under solid-state," Renewable Energy, Elsevier, vol. 163(C), pages 2198-2207.
    12. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    13. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Cerrillo, Míriam & Viñas, Marc & Bonmatí, August, 2018. "Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane," Renewable Energy, Elsevier, vol. 120(C), pages 178-189.
    15. He, Yuting & Li, Qing & Li, Jun & Zhang, Liang & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Magnetic assembling GO/Fe3O4/microbes as hybridized biofilms for enhanced methane production in microbial electrosynthesis," Renewable Energy, Elsevier, vol. 185(C), pages 862-870.
    16. Zhou, Aijuan & Zhang, Jiaguang & Varrone, Cristiano & Wen, Kaili & Wang, Guoying & Liu, Wenzong & Wang, Aijie & Yue, Xiuping, 2017. "Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments," Energy, Elsevier, vol. 137(C), pages 457-467.
    17. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2021. "Effectiveness of electromagnetic in situ magnetite capture in anaerobic sequencing batch treatment of dairy effluent under electro-syntrophic conditions," Renewable Energy, Elsevier, vol. 179(C), pages 105-115.
    18. Bronius Žalys & Kęstutis Venslauskas & Kęstutis Navickas & Egidijus Buivydas & Mantas Rubežius, 2023. "The Influence of CO 2 Injection into Manure as a Pretreatment Method for Increased Biogas Production," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    19. Pei Guo & Jiri Zhou & Rongjiang Ma & Nanyang Yu & Yanping Yuan, 2019. "Biogas Production and Heat Transfer Performance of a Multiphase Flow Digester," Energies, MDPI, vol. 12(10), pages 1-18, May.
    20. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1177-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.