IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp587-595.html
   My bibliography  Save this article

Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan

Author

Listed:
  • Sheng, Songwei
  • Wang, Kunlin
  • Lin, Hongjun
  • Zhang, Yaqun
  • You, Yage
  • Wang, Zhenpeng
  • Chen, Aiju
  • Jiang, Jiaqiang
  • Wang, Wensheng
  • Ye, Yin

Abstract

To find an efficient and economic way to convert wave energy, a one-base multi-buoy offshore floating wave energy converter Sharp Eagle Wanshan is designed, consisting of four absorbing buoys, one semi-submersible barge, and other components. The working principle of the device is described in this paper. An experiment of a 1:13.78 model machine was carried out to test the hydrodynamic performance of the device and make an initial evaluation for the design The influence of wave period, wave height, work load and wave direction was tested. After construction, two-stage open sea tests have been finished in the waters near Wanshan Islands from November 2015 to June 2016. The device showed great power generation capacity with total generated output of 30530.57 kWh, and largest daily generation of 1847.09 kWh. During the open sea tests, the energy conversion efficiency was measured, and results show that capture width ratio of Wanshan remains higher than 20% in the wave period between 4 and 6.5 s and wave height range of 0.6–1.8 m. After operating in a wide range of conditions, including a tropical storm on May 27, amounts of tests data, experiences and lessons have been obtained and will be summed up and presented in the paper.

Suggested Citation

  • Sheng, Songwei & Wang, Kunlin & Lin, Hongjun & Zhang, Yaqun & You, Yage & Wang, Zhenpeng & Chen, Aiju & Jiang, Jiaqiang & Wang, Wensheng & Ye, Yin, 2017. "Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan," Renewable Energy, Elsevier, vol. 113(C), pages 587-595.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:587-595
    DOI: 10.1016/j.renene.2017.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    2. Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
    3. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    2. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    4. Qiang Zhai & Linsen Zhu & Shizhou Lu, 2018. "Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter," Energies, MDPI, vol. 11(9), pages 1-15, September.
    5. Huang, Shuo & Sheng, Songwei & Gerthoffert, Arnaud & Cong, Yu & Zhang, Tianyu & Wang, Zhenpeng, 2019. "Numerical design study of multipoint mooring systems for the floating wave energy converter in deep water with a sloping bottom," Renewable Energy, Elsevier, vol. 136(C), pages 558-571.
    6. Cheng, Yong & Song, Fukai & Xi, Chen & Collu, Maurizio & Yuan, Zhiming & Incecik, Atilla, 2023. "Feasibility of integrating a very large floating structure with multiple wave energy converters combining oscillating water columns and oscillating flaps," Energy, Elsevier, vol. 274(C).
    7. Xuhui, Yue & Qijuan, Chen & Zenghui, Wang & Dazhou, Geng & Donglin, Yan & Wen, Jiang & Weiyu, Wang, 2019. "A novel nonlinear state space model for the hydraulic power take-off of a wave energy converter," Energy, Elsevier, vol. 180(C), pages 465-479.
    8. Wang, Kunlin & Sheng, Songwei & Zhang, Yaqun & Ye, Yin & Jiang, Jiaqiang & Lin, Hongjun & Huang, Zhenxin & Wang, Zhenpeng & You, Yage, 2019. "Principle and control strategy of pulse width modulation rectifier for hydraulic power generation system," Renewable Energy, Elsevier, vol. 135(C), pages 1200-1206.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    2. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    3. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    4. Sierra, J.P. & Casas-Prat, M. & Campins, E., 2017. "Impact of climate change on wave energy resource: The case of Menorca (Spain)," Renewable Energy, Elsevier, vol. 101(C), pages 275-285.
    5. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    6. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    7. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    8. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    9. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    10. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    11. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    12. Filianoti, Pasquale & Camporeale, Sergio M., 2008. "A linearized model for estimating the performance of submerged resonant wave energy converters," Renewable Energy, Elsevier, vol. 33(4), pages 631-641.
    13. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    14. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    15. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    16. Albert, Alberto & Berselli, Giovanni & Bruzzone, Luca & Fanghella, Pietro, 2017. "Mechanical design and simulation of an onshore four-bar wave energy converter," Renewable Energy, Elsevier, vol. 114(PB), pages 766-774.
    17. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    18. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    19. Hong, Yue & Waters, Rafael & Boström, Cecilia & Eriksson, Mikael & Engström, Jens & Leijon, Mats, 2014. "Review on electrical control strategies for wave energy converting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 329-342.
    20. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:587-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.