IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp392-398.html
   My bibliography  Save this article

Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

Author

Listed:
  • Jasiūnas, Lukas
  • Pedersen, Thomas H.
  • Toor, Saqib S.
  • Rosendahl, Lasse A.

Abstract

The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due to its organic nature (e.g. straw, horse manure and sphagnum) and ample availability with an annual production of over 17 million metric tonnes, globally. Locally acquired samples were analysed and converted hydrothermally. A biocrude yield of 48% on dry ash-free (DAF) basis was obtained but it was accompanied by a solid fraction (organics and inorganics) of 50% on dry basis, considered to be critically high in a continuous HTL context. Acid leaching (citric acid) of the SMC and co-liquefaction (with aspen wood (AW)) were investigated as means to decrease the solid fraction. Whereas the SMC leaching showed to be ineffective, co-liquefaction showed potential. The solid fraction could be reduced to half (24.5%) by mixing SMC:AW in a 1:3 mass ratio.

Suggested Citation

  • Jasiūnas, Lukas & Pedersen, Thomas H. & Toor, Saqib S. & Rosendahl, Lasse A., 2017. "Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust," Renewable Energy, Elsevier, vol. 111(C), pages 392-398.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:392-398
    DOI: 10.1016/j.renene.2017.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.
    3. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
    4. Daniele Castello & Thomas Helmer Pedersen & Lasse Aistrup Rosendahl, 2018. "Continuous Hydrothermal Liquefaction of Biomass: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-35, November.
    5. Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
    6. Lozano, E.M. & Pedersen, T.H. & Rosendahl, L.A., 2020. "Integration of hydrothermal liquefaction and carbon capture and storage for the production of advanced liquid biofuels with negative CO2 emissions," Applied Energy, Elsevier, vol. 279(C).
    7. Chen, Congjin & Zhu, Jingxian & Jia, Shuang & Mi, Shuai & Tong, Zhangfa & Li, Zhixia & Li, Mingfei & Zhang, Yanjuan & Hu, Yuhua & Huang, Zuqiang, 2018. "Effect of ethanol on Mulberry bark hydrothermal liquefaction and bio-oil chemical compositions," Energy, Elsevier, vol. 162(C), pages 460-475.
    8. Wu, Haitang & Zheng, Jilu & Wang, Guoqiang, 2019. "Catalytic liquefaction of switchgrass in isobutanol/water system for bio-oil development over bifunctional Ni-HPMo/Fe3O4@Al-MCM-41 catalysts," Renewable Energy, Elsevier, vol. 141(C), pages 96-106.
    9. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:392-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.