IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp551-563.html
   My bibliography  Save this article

A study on the impact of time resolution in solar data on the performance modelling of CSP plants

Author

Listed:
  • Meybodi, Mehdi Aghaei
  • Ramirez Santigosa, Lourdes
  • Beath, Andrew C.

Abstract

Availability of long term solar data and the quality of available data is usually an obstacle to the development of proposals for new concentrating solar power plants. Typical or representative meteorological years using hourly solar and weather data that has been selected to match long-term averages are often used to perform the preliminary design and performance assessment of solar power plants. Although the use of this data is convenient due to the reduced computational requirements in plant optimization, it may result in a simplistic prediction of plant operations that does not reflect the real plant performance by neglecting the impact of short-term variability in solar irradiance and the variations in weather and available solar energy for different years. This study conducts a systematic analysis of the influence of multi-year data sets with a range of different time step sizes (5, 15, 30 and 60 min) and thermal storage capacities (4, 8 and 12 h) using the physical parabolic trough with molten salt storage model in NREL’s System Advisor Model. Results indicate that the appropriateness of different step sizes is likely to vary depending on the purpose of the modelling; however, sensitivity to step size is reduced for larger storage capacities.

Suggested Citation

  • Meybodi, Mehdi Aghaei & Ramirez Santigosa, Lourdes & Beath, Andrew C., 2017. "A study on the impact of time resolution in solar data on the performance modelling of CSP plants," Renewable Energy, Elsevier, vol. 109(C), pages 551-563.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:551-563
    DOI: 10.1016/j.renene.2017.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sau, S. & Corsaro, N. & Crescenzi, T. & D’Ottavi, C. & Liberatore, R. & Licoccia, S. & Russo, V. & Tarquini, P. & Tizzoni, A.C., 2016. "Techno-economic comparison between CSP plants presenting two different heat transfer fluids," Applied Energy, Elsevier, vol. 168(C), pages 96-109.
    2. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    3. Poghosyan, V. & Hassan, Mohamed I., 2015. "Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant," Renewable Energy, Elsevier, vol. 75(C), pages 152-164.
    4. Hinkley, James T. & Hayward, Jennifer A. & Curtin, Bryan & Wonhas, Alex & Boyd, Rod & Grima, Charles & Tadros, Amir & Hall, Ross & Naicker, Kevin, 2013. "An analysis of the costs and opportunities for concentrating solar power in Australia," Renewable Energy, Elsevier, vol. 57(C), pages 653-661.
    5. Janjai, S. & Laksanaboonsong, J. & Seesaard, T., 2011. "Potential application of concentrating solar power systems for the generation of electricity in Thailand," Applied Energy, Elsevier, vol. 88(12), pages 4960-4967.
    6. Moreno-Tejera, S. & Ramírez-Santigosa, L. & Silva-Pérez, M.A., 2015. "A proposed methodology for quick assessment of timestamp and quality control results of solar radiation data," Renewable Energy, Elsevier, vol. 78(C), pages 531-537.
    7. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Gonzalez Gonzalez & J. Valeriano Alvarez Cabal & Vicente Rodríguez Montequin & Joaquín Villanueva Balsera & Rogelio Peón Menéndez, 2020. "CSP Quasi-Dynamic Performance Model Development for All Project Life Cycle Stages and Considering Operation Modes. Validation Using One Year Data," Energies, MDPI, vol. 14(1), pages 1-22, December.
    2. Ferdowsi, Farzad & Mehraeen, Shahab & Upton, Gregory B., 2020. "Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar," Renewable Energy, Elsevier, vol. 152(C), pages 1227-1240.
    3. Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
    4. Moreno-Tejera, S. & Silva-Pérez, M.A. & Ramírez-Santigosa, L. & Lillo-Bravo, I., 2018. "Evaluation of classification methods according to solar radiation features from the viewpoint of the production of parabolic trough CSP plants," Renewable Energy, Elsevier, vol. 121(C), pages 429-440.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    2. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    3. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    4. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    5. Catalina Hernández & Rodrigo Barraza & Alejandro Saez & Mercedes Ibarra & Danilo Estay, 2020. "Potential Map for the Installation of Concentrated Solar Power Towers in Chile," Energies, MDPI, vol. 13(9), pages 1-15, April.
    6. Zhu, Zhao & Zhang, Da & Mischke, Peggy & Zhang, Xiliang, 2015. "Electricity generation costs of concentrated solar power technologies in China based on operational plants," Energy, Elsevier, vol. 89(C), pages 65-74.
    7. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    9. Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
    10. Gamil, Ahmed & Li, Peiwen & Ali, Babkir & Hamid, Mohamed Ali, 2022. "Concentrating solar thermal power generation in Sudan: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    12. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    13. Buscemi, A. & Guarino, S. & Ciulla, G. & Lo Brano, V., 2021. "A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance," Applied Energy, Elsevier, vol. 303(C).
    14. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    15. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    16. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    17. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    18. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    19. Alberto Giaconia & Irena Balog & Giampaolo Caputo, 2021. "Hybridization of CSP Plants: Characterization of a Molten Salt Heater for Binary and Ternary Nitrate Salt Mixtures Fueled with Gas/Biogas Heaters," Energies, MDPI, vol. 14(22), pages 1-18, November.
    20. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:551-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.