IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp542-550.html
   My bibliography  Save this article

Application of plasmonic coloring for making building integrated PV modules comprising of green solar cells

Author

Listed:
  • Peharz, Gerhard
  • Berger, Karl
  • Kubicek, Bernhard
  • Aichinger, Martin
  • Grobbauer, Michael
  • Gratzer, Julia
  • Nemitz, Wolfgang
  • Großschädl, Bettina
  • Auer, Christine
  • Prietl, Christine
  • Waldhauser, Wolfgang
  • Eder, Gabriele C.

Abstract

When dealing with building integrated photovoltaics aesthetical aspects have to be considered. In particular for façade integrated modules with crystalline Silicon (c-Si) solar cells alternative colors are demanded. In this paper an approach for tuning the color of standard c-Si solar cells is presented relying on plasmonic coloring. Metallic (Ag) nano-particles with a diameter of around 100 nm were created on the surface of standard c-Si solar cells. At those nano-particles plasmonic scattering at around 450 to 550 nm causes a color change from blue to green. The green color is resulting from plasmonic scattering and it is found to be insensitive to the angle of observation. A performance analysis of the c-Si cells before and after coating shows that the power of the cells is decreased by less than 10% when applying the plasmonic coating. A first test module comprising of plasmonic-green c-Si cells was carefully characterized and mounted at a test façade for building integrated modules in order to generate data in the targeted field of application. First results of the test module demonstrate that plasmonic coloring is a feasible approach to tune the color of standard c-Si solar cells for being applied in building integrated photovoltaics.

Suggested Citation

  • Peharz, Gerhard & Berger, Karl & Kubicek, Bernhard & Aichinger, Martin & Grobbauer, Michael & Gratzer, Julia & Nemitz, Wolfgang & Großschädl, Bettina & Auer, Christine & Prietl, Christine & Waldhauser, 2017. "Application of plasmonic coloring for making building integrated PV modules comprising of green solar cells," Renewable Energy, Elsevier, vol. 109(C), pages 542-550.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:542-550
    DOI: 10.1016/j.renene.2017.03.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ikkurti, Hanumath Prasad & Saha, Suman, 2015. "A comprehensive techno-economic review of microinverters for Building Integrated Photovoltaics (BIPV)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 997-1006.
    2. Hagemann, I., 1996. "PV in buildings - the influence of pv on the design and planning process of a building," Renewable Energy, Elsevier, vol. 8(1), pages 467-470.
    3. Chiang, Yi-Fang & Chen, Ruei-Tang & Burke, Anthony & Bach, Udo & Chen, Peter & Guo, Tzung-Fang, 2013. "Non-color distortion for visible light transmitted tandem solid state dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 59(C), pages 136-140.
    4. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    5. Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2016. "Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics," Renewable Energy, Elsevier, vol. 89(C), pages 743-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    2. Mohammad Khairul Basher & Mohammad Nur-E Alam & Kamal Alameh, 2021. "Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications," Energies, MDPI, vol. 14(13), pages 1-11, June.
    3. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    4. Mohammad Khairul Basher & Mohammad Nur-E-Alam & Md Momtazur Rahman & Steven Hinckley & Kamal Alameh, 2022. "Design, Development, and Characterization of Highly Efficient Colored Photovoltaic Module for Sustainable Buildings Applications," Sustainability, MDPI, vol. 14(7), pages 1-11, April.
    5. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    6. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    2. Mir M. Ali & Kheir Al-Kodmany & Paul J. Armstrong, 2023. "Energy Efficiency of Tall Buildings: A Global Snapshot of Innovative Design," Energies, MDPI, vol. 16(4), pages 1-23, February.
    3. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    4. Chwieduk, Bartosz & Chwieduk, Dorota, 2021. "Analysis of operation and energy performance of a heat pump driven by a PV system for space heating of a single family house in polish conditions," Renewable Energy, Elsevier, vol. 165(P2), pages 117-126.
    5. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    6. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    7. Chatzipanagi, Anatoli & Frontini, Francesco & Virtuani, Alessandro, 2016. "BIPV-temp: A demonstrative Building Integrated Photovoltaic installation," Applied Energy, Elsevier, vol. 173(C), pages 1-12.
    8. Guerrero-Lemus, R. & Vega, R. & Kim, Taehyeon & Kimm, Amy & Shephard, L.E., 2016. "Bifacial solar photovoltaics – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1533-1549.
    9. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    10. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    11. Dorota Chwieduk & Bartosz Chwieduk, 2023. "Application of Heat Pumps in New Housing Estates in Cities Suburbs as an Means of Energy Transformation in Poland," Energies, MDPI, vol. 16(8), pages 1-19, April.
    12. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    13. Suzana Domjan & Lenart Petek & Ciril Arkar & Sašo Medved, 2020. "Experimental Study on Energy Efficiency of Multi-Functional BIPV Glazed Façade Structure during Heating Season," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Moldovan, Camelia Liliana & Păltănea, Radu & Visa, Ion, 2020. "Improvement of clear sky models for direct solar irradiance considering turbidity factor variable during the day," Renewable Energy, Elsevier, vol. 161(C), pages 559-569.
    15. Zhiqiang Wang & Qi Tian & Jie Jia, 2022. "The Convective Heat Transfer Performance and Structural Optimization of the Cavity in Energy-Saving Thermal Insulation Windows under Cold Air Penetration Condition," Energies, MDPI, vol. 15(7), pages 1-21, March.
    16. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    17. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    18. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    19. Zhu, Li & Zhang, Jiqiang & Li, Qingxiang & Shao, Zebiao & Chen, Mengdong & Yang, Yang & Sun, Yong, 2020. "Comprehensive analysis of heat transfer of double-skin facades integrated high concentration photovoltaic (CPV-DSF)," Renewable Energy, Elsevier, vol. 161(C), pages 635-649.
    20. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:542-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.