IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp371-379.html
   My bibliography  Save this article

Optimal analytic dispatch for tidal energy generation

Author

Listed:
  • Lisboa, A.C.
  • Vieira, T.L.
  • Guedes, L.S.M.
  • Vieira, D.A.G.
  • Saldanha, R.R.

Abstract

This paper proposes an analytic dispatch for tidal power plants that centralizes the discharge period in the tides extremes. Since the tide cycles are well predicted by a sinusoidal function, this method provides an accurate power generation as shown in the comparative tests. Furthermore, an optimal generation estimation method is derived considering that all stored water is discharged during the tides extremes, i.e., discharging at maximal water head. This method calculates a more realistic maximal power generation, which is especially simple in double-effect operation mode (power production in ebb and flood tides), since the reservoir geometry is not explicitly considered. The proposed methods are compared with a classical analytic solution and an optimal dispatch formulation.

Suggested Citation

  • Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:371-379
    DOI: 10.1016/j.renene.2017.02.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yates, Nicholas & Walkington, Ian & Burrows, Richard & Wolf, Judith, 2013. "The energy gains realisable through pumping for tidal range energy schemes," Renewable Energy, Elsevier, vol. 58(C), pages 79-84.
    2. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    3. Ferreira, Rafael M. & Estefen, Segen F., 2009. "Alternative concept for tidal power plant with reservoir restrictions," Renewable Energy, Elsevier, vol. 34(4), pages 1151-1157.
    4. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    5. Leite Neto, Pedro B. & Saavedra, Osvaldo R. & Souza Ribeiro, Luiz A., 2015. "Optimization of electricity generation of a tidal power plant with reservoir constraints," Renewable Energy, Elsevier, vol. 81(C), pages 11-20.
    6. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    7. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    8. Zhou, Juntao & Pan, Shunqi & Falconer, Roger A., 2014. "Optimization modelling of the impacts of a Severn Barrage for a two-way generation scheme using a Continental Shelf model," Renewable Energy, Elsevier, vol. 72(C), pages 415-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    2. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    3. Loisel, Rodica & Sanchez-Angulo, Martin & Schoefs, Franck & Gaillard, Alexandre, 2018. "Integration of tidal range energy with undersea pumped storage," Renewable Energy, Elsevier, vol. 126(C), pages 38-48.
    4. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    5. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    2. Xue, Jingjing & Ahmadian, Reza & Jones, Owen & Falconer, Roger A., 2021. "Design of tidal range energy generation schemes using a Genetic Algorithm model," Applied Energy, Elsevier, vol. 286(C).
    3. Jingjing Xue & Reza Ahmadian & Roger A. Falconer, 2019. "Optimising the Operation of Tidal Range Schemes," Energies, MDPI, vol. 12(15), pages 1-23, July.
    4. Angeloudis, Athanasios & Falconer, Roger A., 2017. "Sensitivity of tidal lagoon and barrage hydrodynamic impacts and energy outputs to operational characteristics," Renewable Energy, Elsevier, vol. 114(PA), pages 337-351.
    5. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    6. Lewis, M.J. & Angeloudis, A. & Robins, P.E. & Evans, P.S. & Neill, S.P., 2017. "Influence of storm surge on tidal range energy," Energy, Elsevier, vol. 122(C), pages 25-36.
    7. Harcourt, Freddie & Angeloudis, Athanasios & Piggott, Matthew D., 2019. "Utilising the flexible generation potential of tidal range power plants to optimise economic value," Applied Energy, Elsevier, vol. 237(C), pages 873-884.
    8. Kim, J.W. & Ha, H.K. & Woo, S.-B. & Kim, M.-S. & Kwon, H.-K., 2021. "Unbalanced sediment transport by tidal power generation in Lake Sihwa," Renewable Energy, Elsevier, vol. 172(C), pages 1133-1144.
    9. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    10. Angeloudis, Athanasios & Kramer, Stephan C. & Hawkins, Noah & Piggott, Matthew D., 2020. "On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment," Renewable Energy, Elsevier, vol. 155(C), pages 876-888.
    11. Xue, Jingjing & Ahmadian, Reza & Jones, Owen, 2020. "Genetic Algorithm in Tidal Range Schemes’ Optimisation," Energy, Elsevier, vol. 200(C).
    12. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    13. Angeloudis, Athanasios & Falconer, Roger A. & Bray, Samuel & Ahmadian, Reza, 2016. "Representation and operation of tidal energy impoundments in a coastal hydrodynamic model," Renewable Energy, Elsevier, vol. 99(C), pages 1103-1115.
    14. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    15. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    16. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    17. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    18. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    19. Mayke Feitosa Progênio & Claudio José Cavalcante Blanco & Josias Silva Cruz & Felipe Antônio Melo Costa Filho & André Luiz Amarante Mesquita, 2021. "Environmental impact index for tidal power plants in amazon region coast," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10814-10830, July.
    20. Pappas, Konstantinos & Mackie, Lucas & Zilakos, Ilias & van der Weijde, Adriaan Hendrik & Angeloudis, Athanasios, 2023. "Sensitivity of tidal range assessments to harmonic constituents and analysis timeframe," Renewable Energy, Elsevier, vol. 205(C), pages 125-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:371-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.