IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v104y2017icp248-258.html
   My bibliography  Save this article

Experimental investigation of different geometries of fixed oscillating water column devices

Author

Listed:
  • Vyzikas, Thomas
  • Deshoulières, Samy
  • Barton, Matthew
  • Giroux, Olivier
  • Greaves, Deborah
  • Simmonds, Dave

Abstract

Oscillating Water Columns (OWCs) are some of the most-studied wave energy converters (WECs). Previous work showed that the geometric characteristics of the OWC can play a significant role in the efficiency of the device. In this study, we investigate the behaviour of different designs of OWC making geometric modifications to the classic design of OWC and the U-OWC, initially suggested by Boccotti [1]. The multi-chamber OWCs examined here are fixed on the seabed and have a slit opening at the seaward side. The physical modelling was undertaken in the flume of the COAST laboratory of the University of Plymouth. The devices were tested in uni-directional regular and irregular wave conditions, with and without power take-off (PTO) mechanism, essentially also testing absorbing seawalls. The aim of the study is to present a preliminary comparison related to the geometry of OWCs under some typical wave conditions and suggest potential shape improvements towards an overall optimization of the devices that takes into account both the hydrodynamic efficiency of the OWC and other design aspects, such as the wave run-up. The present study also endeavours to highlight potential benefits from incorporating OWCs in coastal defence as absorbing seawalls.

Suggested Citation

  • Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
  • Handle: RePEc:eee:renene:v:104:y:2017:i:c:p:248-258
    DOI: 10.1016/j.renene.2016.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811631045X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
    2. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    3. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    4. Zhang, Yali & Zou, Qing-Ping & Greaves, Deborah, 2012. "Air–water two-phase flow modelling of hydrodynamic performance of an oscillating water column device," Renewable Energy, Elsevier, vol. 41(C), pages 159-170.
    5. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    6. Vyzikas, Thomas & Deshoulières, Samy & Giroux, Olivier & Barton, Matthew & Greaves, Deborah, 2017. "Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model," Renewable Energy, Elsevier, vol. 102(PB), pages 294-305.
    7. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    8. Malara, Giovanni & Arena, Felice, 2013. "Analytical modelling of an U-Oscillating Water Column and performance in random waves," Renewable Energy, Elsevier, vol. 60(C), pages 116-126.
    9. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Rong-quan & Ning, De-zhi, 2020. "Dynamic analysis of wave action on an OWC wave energy converter under the influence of viscosity," Renewable Energy, Elsevier, vol. 150(C), pages 578-588.
    2. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    3. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    4. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    5. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    6. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    7. Elhanafi, Ahmed & Kim, Chan Joo, 2018. "Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter," Renewable Energy, Elsevier, vol. 125(C), pages 518-528.
    8. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    9. Vyzikas, Thomas & Deshoulières, Samy & Giroux, Olivier & Barton, Matthew & Greaves, Deborah, 2017. "Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model," Renewable Energy, Elsevier, vol. 102(PB), pages 294-305.
    10. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    11. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    12. Mandev, Murat Barıs & Altunkaynak, Abdüsselam, 2023. "Cylindrical frontwall entrance geometry optimization of an oscillating water column for utmost hydrodynamic performance," Energy, Elsevier, vol. 280(C).
    13. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    14. Altunkaynak, Abdüsselam & Çelik, Anıl, 2022. "A novel Geno-Nonlinear formula for oscillating water column efficiency estimation," Energy, Elsevier, vol. 241(C).
    15. Teixeira, Paulo R.F. & Didier, Eric, 2021. "Numerical analysis of the response of an onshore oscillating water column wave energy converter to random waves," Energy, Elsevier, vol. 220(C).
    16. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    17. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    19. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    20. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2021. "Numerical investigation of scaling effect in two-dimensional oscillating water column wave energy devices for harvesting wave energy," Renewable Energy, Elsevier, vol. 178(C), pages 1381-1397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:104:y:2017:i:c:p:248-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.