IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002150.html
   My bibliography  Save this article

Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions

Author

Listed:
  • Long, Junqi
  • Chen, Chuanhai
  • Liu, Zhifeng
  • Guo, Jinyan
  • Chen, Weizheng

Abstract

Mechanical components mainly work under time-varying operating conditions, causing considerable complexity and variability to degradation signals and making it difficult to estimate the remaining useful life (RUL). To handle this problem, this paper proposes a stochastic hybrid system approach to predict the RUL online under time-varying operating conditions by modelling the degradation signals and operating conditions of components. The discrete dynamic nature of operating conditions is described by a continuous-time Markov chain, and their influences on the degradation signals are quantified by degradation rates and signal jumps in a state-space model that is constructed based on nonlinear Wiener process considering the unit-to-unit variability. Considering that a component may have different failure time points under different operating conditions, a novel simulation method based on sequential Monte Carlo is proposed to simulate future operating profiles, predict multiple failure time points and avoid delayed alarms. Hence, the definition of the RUL of the component can be determined through task orientation according to different functional requirements of users, and the accuracy of RUL prediction results can be significantly improved with engineering application value. The effectiveness of the proposed approach is verified via a simulation study and an accelerated degradation test of machine tool spindles.

Suggested Citation

  • Long, Junqi & Chen, Chuanhai & Liu, Zhifeng & Guo, Jinyan & Chen, Weizheng, 2022. "Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002150
    DOI: 10.1016/j.ress.2022.108568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    2. An, Dawn & Choi, Joo-Ho & Kim, Nam Ho, 2013. "Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 161-169.
    3. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    4. Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
    5. Linkan Bian & Nagi Gebraeel & Jeffrey P. Kharoufeh, 2015. "Degradation modeling for real-time estimation of residual lifetimes in dynamic environments," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 471-486, May.
    6. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Bian, Linkan & Si, Xiaosheng, 2019. "Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 88-100.
    2. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    3. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    4. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Xu, Huyang & Fard, Nasser & Fang, Yuanchen, 2020. "Time series chain graph for modeling reliability covariates in degradation process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    7. Faisal Khan & Omer F. Eker & Atif Khan & Wasim Orfali, 2018. "Adaptive Degradation Prognostic Reasoning by Particle Filter with a Neural Network Degradation Model for Turbofan Jet Engine," Data, MDPI, vol. 3(4), pages 1-21, November.
    8. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    9. Matteo Barbieri & Khan T. P. Nguyen & Roberto Diversi & Kamal Medjaher & Andrea Tilli, 2021. "RUL prediction for automatic machines: a mixed edge-cloud solution based on model-of-signals and particle filtering techniques," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1421-1440, June.
    10. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    11. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    12. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    13. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    14. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    16. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    18. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    20. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.