IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v134y2015icp19-31.html
   My bibliography  Save this article

A particle filtering and kernel smoothing-based approach for new design component prognostics

Author

Listed:
  • Hu, Yang
  • Baraldi, Piero
  • Di Maio, Francesco
  • Zio, Enrico

Abstract

This work addresses the problem of predicting the Remaining Useful Life (RUL) of components for which a mathematical model describing the component degradation is available, but the values of the model parameters are not known and the observations of degradation trajectories in similar components are unavailable. The proposed approach solves this problem by using a Particle Filtering (PF) technique combined with a kernel smoothing (KS) method. This PF–KS method can simultaneously estimate the degradation state and the unknown parameters in the degradation model, while significantly overcoming the problem of particle impoverishment. Based on the updated degradation model (where the unknown parameters are replaced by the estimated ones), the RUL prediction is then performed by simulating future particles evolutions. A numerical application regarding prognostics for Lithium-ion batteries is considered. Various performance indicators measuring precision, accuracy, steadiness and risk of the obtained RUL predictions are computed. The obtained results show that the proposed PF–KS method can provide more satisfactory results than the traditional PF methods.

Suggested Citation

  • Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
  • Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:19-31
    DOI: 10.1016/j.ress.2014.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014002439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    2. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    3. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    4. An, Dawn & Choi, Joo-Ho & Kim, Nam Ho, 2013. "Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 161-169.
    5. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    6. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    7. Wicker, Nicolas & Muller, Jean & Kalathur, Ravi Kiran Reddy & Poch, Olivier, 2008. "A maximum likelihood approximation method for Dirichlet's parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1315-1322, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yiwei & Gogu, Christian & Kim, Nam H. & Haftka, Raphael T. & Binaud, Nicolas & Bes, Christian, 2019. "Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 86-100.
    2. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    3. Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
    4. Chang, Yang & Fang, Huajing, 2019. "A hybrid prognostic method for system degradation based on particle filter and relevance vector machine," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 51-63.
    5. Luca Pinciroli & Piero Baraldi & Guido Ballabio & Michele Compare & Enrico Zio, 2021. "Deep Reinforcement Learning Based on Proximal Policy Optimization for the Maintenance of a Wind Farm with Multiple Crews," Energies, MDPI, vol. 14(20), pages 1-17, October.
    6. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    7. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.
    8. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Zhiguo Zeng & Francesco Di Maio & Enrico Zio & Rui Kang, 2017. "A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods," Journal of Risk and Reliability, , vol. 231(1), pages 36-52, February.
    10. Lin Zou & Baoyi Wen & Yiying Wei & Yong Zhang & Jie Yang & Hui Zhang, 2022. "Online Prediction of Remaining Useful Life for Li-Ion Batteries Based on Discharge Voltage Data," Energies, MDPI, vol. 15(6), pages 1-16, March.
    11. Chang, Mingu & Lee, Jongsoo, 2020. "Early stage data-based probabilistic wear life prediction and maintenance interval optimization of driving wheels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    13. Ying Zhang & Tao Yang & Hongkuan Zhou & Dongzhen Lyu & Wei Zheng & Xianling Li, 2023. "A Prognosis Method for Condenser Fouling Based on Differential Modeling," Energies, MDPI, vol. 16(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    2. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    3. Faisal Khan & Omer F. Eker & Atif Khan & Wasim Orfali, 2018. "Adaptive Degradation Prognostic Reasoning by Particle Filter with a Neural Network Degradation Model for Turbofan Jet Engine," Data, MDPI, vol. 3(4), pages 1-21, November.
    4. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    5. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    6. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Pradeep Kundu & Makarand S.Kulkarni & Ashish K.Darpe, 2023. "A hybrid prognosis approach for life prediction of gears subjected to progressive pitting failure mode," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1325-1346, March.
    8. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    9. Wei Teng & Xiaolong Zhang & Yibing Liu & Andrew Kusiak & Zhiyong Ma, 2016. "Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox," Energies, MDPI, vol. 10(1), pages 1-16, December.
    10. Wang, Yiwei & Gogu, Christian & Kim, Nam H. & Haftka, Raphael T. & Binaud, Nicolas & Bes, Christian, 2019. "Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 86-100.
    11. Chiachío, Juan & Chiachío, Manuel & Sankararaman, Shankar & Saxena, Abhinav & Goebel, Kai, 2015. "Condition-based prediction of time-dependent reliability in composites," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 134-147.
    12. Son, Junbo & Zhou, Shiyu & Sankavaram, Chaitanya & Du, Xinyu & Zhang, Yilu, 2016. "Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 38-50.
    13. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
    14. Matteo Barbieri & Khan T. P. Nguyen & Roberto Diversi & Kamal Medjaher & Andrea Tilli, 2021. "RUL prediction for automatic machines: a mixed edge-cloud solution based on model-of-signals and particle filtering techniques," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1421-1440, June.
    15. Jinjiang Wang & Robert X. Gao & Zhuang Yuan & Zhaoyan Fan & Laibin Zhang, 2019. "A joint particle filter and expectation maximization approach to machine condition prognosis," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 605-621, February.
    16. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    17. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Likun Ren & Weimin Lv & Shiwei Jiang, 2018. "Machine prognostics based on sparse representation model," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 277-285, February.
    19. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    20. Kai Meng & Peihuang Lou & Xianghui Peng & Victor Prybutok, 2017. "Quality-driven recovery decisions for used components in reverse logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4712-4728, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.