IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v123y2014icp171-182.html
   My bibliography  Save this article

The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads

Author

Listed:
  • Mattrand, C.
  • Bourinet, J.-M.

Abstract

The paper investigates the reliability of cracked components subjected to random amplitude loads modeled by discrete-time Markov processes. The proposed approach is able to capture interaction effects between cycles along the random loading sequence, which are of real interest in the damage tolerance design of aircraft structural components. Random fatigue loads are either modeled by discrete-time First-order Markov Chains or hidden Markov chains with continuous state space and their parameters are identified from in-flight data recorded on a fleet of fighter aircrafts. The uncertainties of the initial crack parameters and material properties are not accounted for in this work and some additional simplifying assumptions are made in order to define a tractable problem. The solution strategy for reliability assessment hinges on the cross-entropy method. The application of this method to Markov chains with discrete state space is first presented based on previous works of the literature and the paper then develops its extension to the selected Hidden Markov Model with continuous state space. Several damage tolerance applications are performed to illustrate the relevance and efficiency of the proposed methodology for which the strengths and limitations are finally highlighted.

Suggested Citation

  • Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
  • Handle: RePEc:eee:reensy:v:123:y:2014:i:c:p:171-182
    DOI: 10.1016/j.ress.2013.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yongming & Liu, Liming & Stratman, Brant & Mahadevan, Sankaran, 2008. "Multiaxial fatigue reliability analysis of railroad wheels," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 456-467.
    2. Bickenbach, Frank & Bode, Eckhardt, 2001. "Markov or not Markov - this should be a question," Kiel Working Papers 1086, Kiel Institute for the World Economy (IfW Kiel).
    3. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    4. Neddermeyer, Jan C., 2009. "Computationally Efficient Nonparametric Importance Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 788-802.
    5. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    6. Wang, Zequn & Wang, Pingfeng, 2013. "A new approach for reliability analysis with time-variant performance characteristics," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 70-81.
    7. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    8. Ad Ridder, 2005. "Importance Sampling Simulations of Markovian Reliability Systems Using Cross-Entropy," Annals of Operations Research, Springer, vol. 134(1), pages 119-136, February.
    9. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    2. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    4. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    2. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    3. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Ali Kadhem, Athraa & Abdul Wahab, Noor Izzri & Aris, Ishak & Jasni, Jasronita & Abdalla, Ahmed N., 2017. "Computational techniques for assessing the reliability and sustainability of electrical power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1175-1186.
    5. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    6. Nguyen, Hoa T.M. & Chow, Andy H.F. & Ying, Cheng-shuo, 2021. "Pareto routing and scheduling of dynamic urban rail transit services with multi-objective cross entropy method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    8. Ferdinand Bollwein & Stephan Westphal, 2022. "Oblique decision tree induction by cross-entropy optimization based on the von Mises–Fisher distribution," Computational Statistics, Springer, vol. 37(5), pages 2203-2229, November.
    9. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    10. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    11. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    12. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    13. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    14. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    15. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    16. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    17. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    18. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    19. Caballero, Rafael & Hernández-Díaz, Alfredo G. & Laguna, Manuel & Molina, Julián, 2015. "Cross entropy for multiobjective combinatorial optimization problems with linear relaxations," European Journal of Operational Research, Elsevier, vol. 243(2), pages 362-368.
    20. Ad Ridder, 2004. "Importance Sampling Simulations of Markovian Reliability Systems using Cross Entropy," Tinbergen Institute Discussion Papers 04-018/4, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:123:y:2014:i:c:p:171-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.