IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v107y2012icp139-148.html
   My bibliography  Save this article

Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste

Author

Listed:
  • Hansen, Clifford W.
  • Helton, Jon C.
  • Sallaberry, Cédric J.

Abstract

The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, used a Latin hypercube sample (LHS) of size 300 in the propagation of the epistemic uncertainty present in 392 analysis input variables. To assess the adequacy of this sample size, the 2008 YM PA was repeated with three independently generated (i.e., replicated) LHSs of size 300 from the indicated 392 input variables and their associated distributions. Comparison of the uncertainty and sensitivity analysis results obtained with the three replicated LHSs showed that the three samples lead to similar results and that the use of any one of three samples would have produced the same assessment of the effects and implications of epistemic uncertainty. Uncertainty and sensitivity analysis results obtained with the three LHSs were compared by (i) simple visual inspection, (ii) use of the t-distribution to provide a formal representation of sample-to-sample variability in the determination of expected values over epistemic uncertainty and other distributional quantities, and (iii) use of the top down coefficient of concordance to determine agreement with respect to the importance of individual variables indicated in sensitivity analyses performed with the replicated samples. The presented analyses established that an LHS of size 300 was adequate for the propagation and analysis of the effects and implications of epistemic uncertainty in the 2008 YM PA.

Suggested Citation

  • Hansen, Clifford W. & Helton, Jon C. & Sallaberry, Cédric J., 2012. "Use of replicated Latin hypercube sampling to estimate sampling variance in uncertainty and sensitivity analysis results for the geologic disposal of radioactive waste," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 139-148.
  • Handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:139-148
    DOI: 10.1016/j.ress.2011.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, Jon C. & Sallaberry, Cedric J., 2009. "Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 677-698.
    2. Kennedy, Marc C. & Anderson, Clive W. & Conti, Stefano & O’Hagan, Anthony, 2006. "Case studies in Gaussian process modelling of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1301-1309.
    3. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    4. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    5. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    2. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    6. Sakurahara, Tatsuya & Mohaghegh, Zahra & Reihani, Seyed & Kee, Ernie & Brandyberry, Mark & Rodgers, Shawn, 2018. "An integrated methodology for spatio-temporal incorporation of underlying failure mechanisms into fire probabilistic risk assessment of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 242-257.
    7. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    8. Edoardo Tosoni & Ahti Salo & Enrico Zio, 2018. "Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 755-776, April.
    9. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    2. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    3. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    5. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    6. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    7. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    8. Curtis B. Storlie & William A. Lane & Emily M. Ryan & James R. Gattiker & David M. Higdon, 2015. "Calibration of Computational Models With Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 68-82, March.
    9. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    10. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    11. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    12. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    13. Swift, Peter N. & Hansen, Clifford W. & Helton, Jon C. & Howard, Robert L. & Kathryn Knowles, M. & MacKinnon, Robert J. & McNeish, Jerry A. & David Sevougian, S., 2014. "Summary discussion of the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada," Reliability Engineering and System Safety, Elsevier, vol. 122(C), pages 449-456.
    14. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    15. Marc Kennedy & Clive Anderson & Anthony O'Hagan & Mark Lomas & Ian Woodward & John Paul Gosling & Andreas Heinemeyer, 2008. "Quantifying uncertainty in the biospheric carbon flux for England and Wales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 109-135, January.
    16. Kennedy, Marc C. & Anderson, Clive W. & Conti, Stefano & O’Hagan, Anthony, 2006. "Case studies in Gaussian process modelling of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1301-1309.
    17. V. J. Roelofs & M. C. Kennedy, 2011. "Sensitivity Analysis and Estimation of Extreme Tail Behavior in Two‐Dimensional Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1597-1609, October.
    18. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    19. Andrianakis, Ioannis & Challenor, Peter G., 2012. "The effect of the nugget on Gaussian process emulators of computer models," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4215-4228.
    20. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:107:y:2012:i:c:p:139-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.