IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v56y2011i1p92-104.html
   My bibliography  Save this article

Life cycle assessment of biogas digestate processing technologies

Author

Listed:
  • Rehl, T.
  • Müller, J.

Abstract

Driven by a high increase of large scale biogas plants based on bio waste, agricultural by-products and waste from food industry, there is a rapid structural development of the agricultural holdings in Germany. Particularly in regions with intensive livestock husbandry, this leads to an overprovision of nutrients. New technologies have been introduced during the last years to treat biogas digestate for optimal transport and application conditions. An environmental Life Cycle Assessment (LCA) was carried out in order to compare the environmental impacts and the energy efficiency of seven treatment options of biogas digestate. The treatment options include one conventional digestate management option (storage and application of untreated manure on agricultural land), one stabilization process (composting), three mechanical drying options (belt dryer, drum dryer and solar dryer), one option using thermal vaporization (concentration) and finally one physical–chemical treatment (combination of separation, ultra-filtration, reverse osmosis and ionic exchanger). Primary energy demand (PED), global warming potential (GWP) and acidification potential (AP) were analysed and presented per kg of digestate on the input side of the system as functional unit (fu). Based on the default parameter setting, four scenarios have been defined to analyse the influence of different feedstock, different kinds of energy supply, different emission reductions techniques and different logistic chains on the LCA results. In the overall comparison, solar drying, composting and physical–chemical treatment were identified to be the most suitable options to reduce the use of resources and environmental impacts compared to the conventional digestate management. Belt drying turned out to be the handling process with the highest PED demand, GWP and AP among the compared options. Total PED varies from −0.09MJ/fu (i.e. savings) in the composting option up to 1.3MJ/fu in the belt drying option. The GWP was in a range between 0.06 CO2eq./fu for solar drying to 0.1kg CO2eq./fu for belt drying. The amount of AP ranged from 2.7kg SO2geq./fu in composting to 7.1g SO2eq./fu in belt drying. The results indicate that the environmental impact depends largely on nitrogen related emissions from digestate treatment, storage and field application. Another important aspect is the amount and kind of fuel used for heat supply (biogas, natural gas) and the procedure chosen for the allocation among heat and power.

Suggested Citation

  • Rehl, T. & Müller, J., 2011. "Life cycle assessment of biogas digestate processing technologies," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 92-104.
  • Handle: RePEc:eee:recore:v:56:y:2011:i:1:p:92-104
    DOI: 10.1016/j.resconrec.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911001686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamil Salihoglu, Nezih & Pinarli, Vedat & Salihoglu, Guray, 2007. "Solar drying in sludge management in Turkey," Renewable Energy, Elsevier, vol. 32(10), pages 1661-1675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Yan & Deng, Wenjing, 2014. "Environmental impacts of different food waste resource technologies and the effects of energy mix," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 214-221.
    2. Tobias Zimmer & Andreas Rudi & Simon Glöser-Chahoud & Frank Schultmann, 2022. "Techno-Economic Analysis of Intermediate Pyrolysis with Solar Drying: A Chilean Case Study," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Michela Langone & Daniele Basso, 2020. "Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways," IJERPH, MDPI, vol. 17(18), pages 1-33, September.
    4. Dahlin, Johannes & Herbes, Carsten & Nelles, Michael, 2015. "Biogas digestate marketing: Qualitative insights into the supply side," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 152-161.
    5. Dahlin, Johannes & Nelles, Michael & Herbes, Carsten, 2017. "Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 27-38.
    6. Malhotra, Milan & Aboudi, Kaoutar & Pisharody, Lakshmi & Singh, Ayush & Banu, J. Rajesh & Bhatia, Shashi Kant & Varjani, Sunita & Kumar, Sunil & González-Fernández, Cristina & Kumar, Sumant & Singh, R, 2022. "Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    2. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    3. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    4. Bennamoun, Lyes & Arlabosse, Patricia & Léonard, Angélique, 2013. "Review on fundamental aspect of application of drying process to wastewater sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 29-43.
    5. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    6. Alice Sorrenti & Santo Fabio Corsino & Francesco Traina & Gaspare Viviani & Michele Torregrossa, 2022. "Enhanced Sewage Sludge Drying with a Modified Solar Greenhouse," Clean Technol., MDPI, vol. 4(2), pages 1-13, May.
    7. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    8. Wang, Panli & Mohammed, Danish & Zhou, Pin & Lou, Ziyang & Qian, Pansheng & Zhou, Quanfa, 2019. "Roof solar drying processes for sewage sludge within sandwich-like chamber bed," Renewable Energy, Elsevier, vol. 136(C), pages 1071-1081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:56:y:2011:i:1:p:92-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.