IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v124y2017icp25-41.html
   My bibliography  Save this article

Assessment of element-specific recycling efficiency in WEEE pre-processing

Author

Listed:
  • Ueberschaar, Maximilian
  • Geiping, Julia
  • Zamzow, Malte
  • Flamme, Sabine
  • Rotter, Vera Susanne

Abstract

Pre-processing is a crucial step to ensure the efficiency of subsequent processes and the quality of recyclates. The efficiency of pre-processing can be affected by high losses to undesignated output fractions. Standard batch tests usually provide mass balances and are a good proxy for bulk materials balances (iron/steel, aluminum, plastics).

Suggested Citation

  • Ueberschaar, Maximilian & Geiping, Julia & Zamzow, Malte & Flamme, Sabine & Rotter, Vera Susanne, 2017. "Assessment of element-specific recycling efficiency in WEEE pre-processing," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 25-41.
  • Handle: RePEc:eee:recore:v:124:y:2017:i:c:p:25-41
    DOI: 10.1016/j.resconrec.2017.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perrine Chancerel & Christina E.M. Meskers & Christian Hagelüken & Vera Susanne Rotter, 2009. "Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 791-810, October.
    2. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    3. Marat Abzalov, 2011. "Sampling Errors and Control of Assay Data Quality in Exploration and Mining Geology," Chapters, in: Ognyan Ivanov (ed.), Applications and Experiences of Quality Control, IntechOpen.
    4. Maximilian Ueberschaar & Daniel Dariusch Jalalpoor & Nathalie Korf & Vera Susanne Rotter, 2017. "Potentials and Barriers for Tantalum Recovery from Waste Electric and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 700-714, June.
    5. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    6. Oliver Schwab & Ottavia Zoboli & Helmut Rechberger, 2017. "A Data Characterization Framework for Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 16-25, February.
    7. David Laner & Helmut Rechberger & Thomas Astrup, 2015. "Applying Fuzzy and Probabilistic Uncertainty Concepts to the Material Flow Analysis of Palladium in Austria," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1055-1069, December.
    8. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "A waste management planning based on substance flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 54-66.
    9. Paul H. Brunner, 2012. "Substance Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 293-295, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2018. "Shedding Light on the Anthropogenic Europium Cycle in the EU–28. Marking Product Turnover and Energy Progress in the Lighting Sector," Resources, MDPI, vol. 7(3), pages 1-17, September.
    2. Nudurupati, Sai Sudhakar & Budhwar, Pawan & Pappu, Raja Phani & Chowdhury, Soumyadeb & Kondala, Mukesh & Chakraborty, Ayon & Ghosh, Sadhan Kumar, 2022. "Transforming sustainability of Indian small and medium-sized enterprises through circular economy adoption," Journal of Business Research, Elsevier, vol. 149(C), pages 250-269.
    3. Wang, Huaidong & Zhang, Shuhao & Li, Bin & Pan, De’an & Wu, Yufeng & Zuo, Tieyong, 2017. "Recovery of waste printed circuit boards through pyrometallurgical processing: A review," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 209-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Eygen, Emile & Feketitsch, Julia & Laner, David & Rechberger, Helmut & Fellner, Johann, 2017. "Comprehensive analysis and quantification of national plastic flows: The case of Austria," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 183-194.
    2. Yvonne Ryan‐Fogarty & Damian Coughlan & Colin Fitzpatrick, 2021. "Quantifying WEEE arising in scrap metal collections: Method development and application in Ireland," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1021-1033, August.
    3. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    4. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    5. Van Eygen, Emile & De Meester, Steven & Tran, Ha Phuong & Dewulf, Jo, 2016. "Resource savings by urban mining: The case of desktop and laptop computers in Belgium," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 53-64.
    6. Chancerel, Perrine & Marwede, Max & Nissen, Nils F. & Lang, Klaus-Dieter, 2015. "Estimating the quantities of critical metals embedded in ICT and consumer equipment," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 9-18.
    7. Richard C. Lupton & Julian M. Allwood, 2018. "Incremental Material Flow Analysis with Bayesian Inference," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1352-1364, December.
    8. Klinglmair, Manfred & Zoboli, Ottavia & Laner, David & Rechberger, Helmut & Astrup, Thomas Fruergaard & Scheutz, Charlotte, 2016. "The effect of data structure and model choices on MFA results: A comparison of phosphorus balances for Denmark and Austria," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 166-175.
    9. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    10. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    11. Milovantseva, Natalia & Fitzpatrick, Colin, 2015. "Barriers to electronics reuse of transboundary e-waste shipment regulations: An evaluation based on industry experiences," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 170-177.
    12. Yoshida, Aya & Terazono, Atsushi & Ballesteros, Florencio C. & Nguyen, Duc-Quang & Sukandar, Sunandar & Kojima, Michikazu & Sakata, Shozo, 2016. "E-waste recycling processes in Indonesia, the Philippines, and Vietnam: A case study of cathode ray tube TVs and monitors," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 48-58.
    13. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    14. Klinglmair, Manfred & Lemming, Camilla & Jensen, Lars Stoumann & Rechberger, Helmut & Astrup, Thomas Fruergaard & Scheutz, Charlotte, 2015. "Phosphorus in Denmark: National and regional anthropogenic flows," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 311-324.
    15. Horațiu Vermeșan & Ancuța-Elena Tiuc & Marius Purcar, 2019. "Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    16. Ardente, Fulvio & Mathieux, Fabrice & Recchioni, Marco, 2014. "Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 158-171.
    17. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    18. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
    19. Iulia Dolganova & Vanessa Bach & Anne Rödl & Martin Kaltschmitt & Matthias Finkbeiner, 2022. "Assessment of Critical Resource Use in Aircraft Manufacturing," Circular Economy and Sustainability,, Springer.
    20. Xaysackda Vilaysouk & Savath Saypadith & Seiji Hashimoto, 2022. "Semisupervised machine learning classification framework for material intensity parameters of residential buildings," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 72-87, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:124:y:2017:i:c:p:25-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.