IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v264y2023ics0925527323002141.html
   My bibliography  Save this article

Warranty service contracts design for deteriorating products with maintenance duration commitments

Author

Listed:
  • Li, Ting
  • He, Shuguang
  • Zhao, Xiujie
  • Liu, Bin

Abstract

With the increasing diversification of customers’ demand and purchasing behaviors, more and more manufacturers have focused their attention on the warranty service contracts design. The maintenance duration of the sold product, which plays an important role in the normal production and operation process of the user, is frequently taken into consideration in warranty contracts. In this study, we design different warranty contracts with various combinations of maintenance duration and availability requirements. The manufacturer commits to compensate for each overdue repair or failing to satisfy the availability target. The customers’ choice behavior is described by the multinomial logit (MNL) model, and customers often form their own minimum acceptable levels (also referred to as reference points) of maintenance duration and availability when making purchasing decisions, which have an impact on the contract choice. The expected warranty servicing profit is maximized to determine the optimal price, maintenance duration and availability. Finally, the proposed warranty contracts are demonstrated by numerical examples. We find that the maintenance duration affects not only the warranty cost but also the customer choice, which further affects the optimal contract pricing and profits.

Suggested Citation

  • Li, Ting & He, Shuguang & Zhao, Xiujie & Liu, Bin, 2023. "Warranty service contracts design for deteriorating products with maintenance duration commitments," International Journal of Production Economics, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:proeco:v:264:y:2023:i:c:s0925527323002141
    DOI: 10.1016/j.ijpe.2023.108982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323002141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruxian Wang, 2018. "When Prospect Theory Meets Consumer Choice Models: Assortment and Pricing Management with Reference Prices," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 583-600, July.
    2. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    3. Shizhe Peng & Wei Jiang & Wenhui Zhao, 2021. "A preventive maintenance policy with usage-dependent failure rate thresholds under two-dimensional warranties," IISE Transactions, Taylor & Francis Journals, vol. 53(11), pages 1231-1243, November.
    4. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    6. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    7. Wang, Xiaolin & Zhao, Xiujie & Liu, Bin, 2020. "Design and pricing of extended warranty menus based on the multinomial logit choice model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 237-250.
    8. Li, Ting & He, Shuguang & Zhao, Xiujie, 2022. "Optimal warranty policy design for deteriorating products with random failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    10. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    11. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    12. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    13. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    14. Zhu, Xiaoyan & Jiao, Can & Yuan, Tao, 2019. "Optimal decisions on product reliability, sales and promotion under nonrenewable warranties," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    15. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    16. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Park, Minjae & Mun Jung, Ki & Park, Dong Ho, 2013. "Optimal post-warranty maintenance policy with repair time threshold for minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 147-153.
    18. Huang, Hongfu & Liu, Feng & Zhang, Peng, 2021. "To outsource or not to outsource? Warranty service provision strategies considering competition, costs and reliability," International Journal of Production Economics, Elsevier, vol. 242(C).
    19. Wee, Hui Ming & Widyadana, Gede Agus, 2013. "A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule," Omega, Elsevier, vol. 41(6), pages 941-954.
    20. Jackson, Canek & Pascual, Rodrigo, 2021. "Joint pricing and maintenance strategies in availability-based product-service systems under different overhaul conditions," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    21. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    22. Darghouth, M.N. & Ait-kadi, D. & Chelbi, A., 2017. "Joint optimization of design, warranty and price for products sold with maintenance service contracts," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 197-208.
    23. Chien, Yu-Hung, 2019. "The optimal preventive-maintenance policy for a NHPBP repairable system under free-repair warranty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 444-453.
    24. Liu, Peng & Wang, Guanjun & Su, Peng, 2021. "Optimal maintenance strategies for warranty products with limited repair time and limited repair number," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    25. Liao, Haitao & Elsayed, Elsayed A. & Chan, Ling-Yau, 2006. "Maintenance of continuously monitored degrading systems," European Journal of Operational Research, Elsevier, vol. 175(2), pages 821-835, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ying & Xia, Tangbin & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Optimal maintenance service strategy for OEM entering competitive MRO market under opposite patterns," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    3. Li, Ting & He, Shuguang & Zhao, Xiujie, 2022. "Optimal warranty policy design for deteriorating products with random failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Zhu, Ying & Xia, Tangbin & Hong, Ge & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Collaborative maintenance service and component sales under coopetition patterns for OEMs challenged by booming used-component sales," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Huang, Yeu-Shiang & Fang, Chih-Chiang & Lu, Chang-Ming & (Bill) Tseng, Tzu-Liang, 2022. "Optimal Warranty Policy for Consumer Electronics with Dependent Competing Failure Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Lijun Shang & Yongjun Du & Cang Wu & Chengye Ma, 2022. "A Bivariate Optimal Random Replacement Model for the Warranted Product with Job Cycles," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    7. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Safaei, Fatemeh & Taghipour, Sharareh, 2022. "Optimal preventive maintenance for repairable products with three types of failures sold under a renewable hybrid FRW/PRW policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Liu, Peng & Wang, Guanjun, 2022. "Minimal repair models with non-negligible repair time," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Liu, Peng & Wang, Guanjun, 2023. "Generalized non-renewing replacement warranty policy and an age-based post-warranty maintenance strategy," European Journal of Operational Research, Elsevier, vol. 311(2), pages 567-580.
    11. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2023. "Post-warranty maintenance strategy selection using shape packages process," International Journal of Production Economics, Elsevier, vol. 255(C).
    12. Peng, Shizhe & Jiang, Wei & Wei, Lai & Wang, Xiao-Lin, 2022. "A new cost-sharing preventive maintenance program under two-dimensional warranty," International Journal of Production Economics, Elsevier, vol. 254(C).
    13. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Park, Minjae & Jung, Ki Mun & Park, Dong Ho, 2020. "Warranty cost analysis for second-hand products under a two-stage repair-or-full refund policy," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Wang, Qiang & Zhao, Nenggui & Wu, Jie & Zhu, Qingyuan, 2021. "Optimal pricing and inventory policies with reference price effect and loss-Averse customers," Omega, Elsevier, vol. 99(C).
    18. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li & Du, Yongjun, 2023. "Designing warranty and maintenance policies for products subject to random working cycles," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Lijun Shang & Xiguang Yu & Yongjun Du & Anquan Zou & Qingan Qiu, 2022. "An Optimal Random Hybrid Maintenance Policy of Systems under a Warranty with Rebate and Charge," Mathematics, MDPI, vol. 10(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:264:y:2023:i:c:s0925527323002141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.