IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v172y2018icp185-194.html
   My bibliography  Save this article

Reliability and maintenance policies for a two-stage shock model with self-healing mechanism

Author

Listed:
  • Zhao, Xian
  • Guo, Xiaoxin
  • Wang, Xiaoyue

Abstract

In this paper, a two-stage shock model with self-healing mechanism is proposed as an extension of cumulative shock and delta-shock models. A change point is introduced to describe the two-stage failure process of a system and defined as the moment when the cumulative number of valid shocks reaches d. Before the change point, the system can heal the damage caused by a valid shock when the number of delta-invalid shocks reaches k in the trailing run of invalid shocks. Equivalently, the damage caused by previous i valid shocks can be healed when the number of delta-invalid shocks falls in [ik,(i+1)k) in the run of invalid shocks. The system loses self-healing ability when it reaches the change point, and then fails when the cumulative number of valid shocks reaches a prefixed value n (n > d). Based on the established model, the finite Markov chain imbedding approach is employed to obtain the probability mass function, the distribution function and the mean of shock length. Three preventive maintenance policies are proposed for the system under different monitoring conditions, and corresponding optimization models are constructed to determine the optimal quantities. Finally, numerical examples are given for the proposed model.

Suggested Citation

  • Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
  • Handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:185-194
    DOI: 10.1016/j.ress.2017.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017309274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    2. Zhao, Xian & Wang, Xiaoyue & Sun, Ge, 2015. "Start-up demonstration tests with sparse connection," European Journal of Operational Research, Elsevier, vol. 243(3), pages 865-873.
    3. Fermín Mallor & Javier Santos, 2003. "Reliability of systems subject to shocks with a stochastic dependence for the damages," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 427-444, December.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    5. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    6. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
    7. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    8. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    9. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    10. A-Hameed, M. S. & Proschan, F., 1973. "Nonstationary shock models," Stochastic Processes and their Applications, Elsevier, vol. 1(4), pages 383-404, October.
    11. An, Zongwen & Sun, Daoming, 2017. "Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 129-138.
    12. Kong, Yaonan & Ye, Zhisheng, 2017. "Goodness-of-fit tests in the multi-state Markov model," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 16-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    2. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    3. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    4. Chen, Yunxia & Zhang, Wenbo & Xu, Dan, 2019. "Reliability assessment with varying safety threshold for shock resistant systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 49-60.
    5. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Min Gong & Serkan Eryilmaz & Min Xie, 2020. "Reliability assessment of system under a generalized cumulative shock model," Journal of Risk and Reliability, , vol. 234(1), pages 129-137, February.
    7. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    8. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Hyunju Lee & Ji Hwan Cha, 2021. "A general multivariate new better than used (MNBU) distribution and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 27-46, January.
    10. Jewgeni H. Dshalalow & Ryan T. White, 2022. "Fluctuation Analysis of a Soft-Extreme Shock Reliability Model," Mathematics, MDPI, vol. 10(18), pages 1-33, September.
    11. Wei, Xiaohua & Bai, Sijun & Wu, Bei, 2023. "A novel shock-dependent preventive maintenance policy for degraded systems subject to dynamic environments and N-critical shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    13. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    14. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    16. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Sophie Mercier & Hai Ha Pham, 2016. "A Random Shock Model with Mixed Effect, Including Competing Soft and Sudden Failures, and Dependence," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 377-400, June.
    18. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    19. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:172:y:2018:i:c:p:185-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.