IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v231y2021ics0925527320302310.html
   My bibliography  Save this article

Scheduling proportionate flow shops with preventive machine maintenance

Author

Listed:
  • Yu, Tae-Sun
  • Han, Jun-Hee

Abstract

We examine machine scheduling problems that have been inspired by the production environment of semiconductor manufacturing. In semiconductor manufacturing a job processing machine is often enforced to go through a preventive maintenance operation with an objective of minimizing the wafer quality risk. In this research such periodic machine maintenance is considered for single machine and flow shop scheduling models. For the flow shop model we focus on an important special case with proportionate processing times. We first present that the maximum lateness and the total completion time in a single machine can be minimized by a monotone scheduling rule. For the maximum lateness it is shown that the scheduling rule of a single machine special case is also optimal for a proportionate flow shop. However, for the total completion time we observe that the scheduling algorithm of a single machine is not necessarily optimal for its extension to a proportionate flow shop. We prove that the total completion time in a proportionate flow shop is solvable by an O(n2) algorithm, and even the total weighted completion time is minimized with the same computational complexity. Lastly, we discuss how these results are further generalized when setup operations are additionally considered.

Suggested Citation

  • Yu, Tae-Sun & Han, Jun-Hee, 2021. "Scheduling proportionate flow shops with preventive machine maintenance," International Journal of Production Economics, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302310
    DOI: 10.1016/j.ijpe.2020.107874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320302310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. S.S. Panwalkar & Christos Koulamas, 2015. "On equivalence between the proportionate flow shop and single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 595-603, October.
    3. Wlodzimierz Szwarc & Jatinder N. D. Gupta, 1987. "A flow‐shop problem with sequence‐dependent additive setup times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 619-627, October.
    4. Gupta, Jatinder N. D. & Tunc, Enar A., 1994. "Scheduling a two-stage hybrid flowshop with separable setup and removal times," European Journal of Operational Research, Elsevier, vol. 77(3), pages 415-428, September.
    5. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    6. Wlodzimierz Szwarc, 1983. "Flow Shop Problems with Time Lags," Management Science, INFORMS, vol. 29(4), pages 477-481, April.
    7. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    8. Dileep R. Sule, 1982. "Sequencing n jobs on two machines with setup, processing and removal times separated," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(3), pages 517-519, September.
    9. Byung-Cheon Choi & Joseph Y.-T. Leung & Michael L. Pinedo, 2011. "Minimizing makespan in an ordered flow shop with machine-dependent processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 797-818, November.
    10. Choi, Byung-Cheon & Lee, Kangbok & Leung, Joseph Y.-T. & Pinedo, Michael L., 2010. "Flow shops with machine maintenance: Ordered and proportionate cases," European Journal of Operational Research, Elsevier, vol. 207(1), pages 97-104, November.
    11. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    12. Pranzo, Marco, 2004. "Batch scheduling in a two-machine flow shop with limited buffer and sequence independent setup times and removal times," European Journal of Operational Research, Elsevier, vol. 153(3), pages 581-592, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Jiayu & Shi, Yuanji & Shi, Jianxin & Dai, Yunzhong & Li, Wei, 2023. "An uncertain permutation flow shop predictive scheduling problem with processing interruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    2. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Kangbok & Zheng, Feifeng & Pinedo, Michael L., 2019. "Online scheduling of ordered flow shops," European Journal of Operational Research, Elsevier, vol. 272(1), pages 50-60.
    2. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    3. Jin Qian & Haiyan Han, 2022. "Improved algorithms for proportionate flow shop scheduling with due-window assignment," Annals of Operations Research, Springer, vol. 309(1), pages 249-258, February.
    4. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    5. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    6. Xinyu Sun & Xin-Na Geng & Tao Liu, 2020. "Due-window assignment scheduling in the proportionate flow shop setting," Annals of Operations Research, Springer, vol. 292(1), pages 113-131, September.
    7. Botta-Genoulaz, Valerie, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 101-111, March.
    8. Javad Seif & Mohammad Dehghanimohammadabadi & Andrew Junfang Yu, 2020. "Integrated preventive maintenance and flow shop scheduling under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 852-887, December.
    9. Shabtay, Dvir & Gilenson, Miri, 2023. "A state-of-the-art survey on multi-scenario scheduling," European Journal of Operational Research, Elsevier, vol. 310(1), pages 3-23.
    10. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    11. Wlodzimierz Szwarc & Jatinder N. D. Gupta, 1987. "A flow‐shop problem with sequence‐dependent additive setup times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 619-627, October.
    12. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    13. Azizoglu, Meral & Cakmak, Ergin & Kondakci, Suna, 2001. "A flexible flowshop problem with total flow time minimization," European Journal of Operational Research, Elsevier, vol. 132(3), pages 528-538, August.
    14. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    15. Riezebos, J. & Gaalman, G. J. C., 1998. "Time lag size in multiple operations flow shop scheduling heuristics," European Journal of Operational Research, Elsevier, vol. 105(1), pages 72-90, February.
    16. S.S. Panwalkar & Christos Koulamas, 2015. "Proportionate flow shop: New complexity results and models with due date assignment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(2), pages 98-106, March.
    17. Vincent T’kindt & Federico Della Croce & Mathieu Liedloff, 2022. "Moderate exponential-time algorithms for scheduling problems," 4OR, Springer, vol. 20(4), pages 533-566, December.
    18. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    19. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    20. Hinder, Oliver & Mason, Andrew J., 2017. "A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness," European Journal of Operational Research, Elsevier, vol. 262(2), pages 411-423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320302310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.