IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v105y1998i1p72-90.html
   My bibliography  Save this article

Time lag size in multiple operations flow shop scheduling heuristics

Author

Listed:
  • Riezebos, J.
  • Gaalman, G. J. C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Riezebos, J. & Gaalman, G. J. C., 1998. "Time lag size in multiple operations flow shop scheduling heuristics," European Journal of Operational Research, Elsevier, vol. 105(1), pages 72-90, February.
  • Handle: RePEc:eee:ejores:v:105:y:1998:i:1:p:72-90
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00025-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    2. Graves, Stephen C., 1983. "Scheduling of re-entrant flow shops," Working papers 1438-83., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Lev, V. & Adiri, I., 1984. "V-shop scheduling," European Journal of Operational Research, Elsevier, vol. 18(1), pages 51-56, October.
    4. Wlodzimierz Szwarc, 1983. "Flow Shop Problems with Time Lags," Management Science, INFORMS, vol. 29(4), pages 477-481, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gideon D. Markman & William B. Gartner, 2002. "Is Extraordinary Growth Profitable? A Study of Inc. 500 High–Growth Companies," Entrepreneurship Theory and Practice, , vol. 27(1), pages 65-75, January.
    2. Weng, Michael X. & Lu, John & Ren, Haiying, 2001. "Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective," International Journal of Production Economics, Elsevier, vol. 70(3), pages 215-226, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    2. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Mukherjee, Saral & Chatterjee Ashis K, 2002. "Applying Machine Based Decomposition in 2-Machine Flow Shops," IIMA Working Papers WP2002-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    5. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    6. Mastrolilli, Monaldo & Bianchi, Leonora, 2005. "Core instances for testing: A case study," European Journal of Operational Research, Elsevier, vol. 166(1), pages 51-62, October.
    7. Imed Kacem, 2009. "Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 117-133, February.
    8. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    9. Sheen, Gwo-Ji & Liao, Lu-Wen, 2007. "A branch and bound algorithm for the one-machine scheduling problem with minimum and maximum time lags," European Journal of Operational Research, Elsevier, vol. 181(1), pages 102-116, August.
    10. Suliman, S. M. A., 2000. "A two-phase heuristic approach to the permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 143-152, March.
    11. Jinliang Cheng & Hiroshi Kise & Hironori Matsumoto, 1997. "A branch-and-bound algorithm with fuzzy inference for a permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 96(3), pages 578-590, February.
    12. Yu, Tae-Sun & Han, Jun-Hee, 2021. "Scheduling proportionate flow shops with preventive machine maintenance," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
    14. Nodari Vakhania, 2019. "Dynamic Restructuring Framework for Scheduling with Release Times and Due-Dates," Mathematics, MDPI, vol. 7(11), pages 1-42, November.
    15. Baptiste, Philippe & Peridy, Laurent & Pinson, Eric, 2003. "A branch and bound to minimize the number of late jobs on a single machine with release time constraints," European Journal of Operational Research, Elsevier, vol. 144(1), pages 1-11, January.
    16. Chung, Daeyoung & Lee, Kichang & Shin, Kitae & Park, Jinwoo, 2005. "A new approach to job shop scheduling problems with due date constraints considering operation subcontracts," International Journal of Production Economics, Elsevier, vol. 98(2), pages 238-250, November.
    17. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    18. Foad Iravani & Sriram Dasu & Reza Ahmadi, 2012. "A Hierarchical Framework for Organizing a Software Development Process," Operations Research, INFORMS, vol. 60(6), pages 1310-1322, December.
    19. Botta-Genoulaz, Valerie, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 101-111, March.
    20. Ruslan Sadykov & Laurence A. Wolsey, 2006. "Integer Programming and Constraint Programming in Solving a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates," INFORMS Journal on Computing, INFORMS, vol. 18(2), pages 209-217, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:105:y:1998:i:1:p:72-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.