IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v221y2020ics0925527319302762.html
   My bibliography  Save this article

On a method to improve your service BOMs within spare parts management

Author

Listed:
  • Stip, J.
  • Van Houtum, G.J.

Abstract

For advanced capital goods with high system availability requirements, it is common that all customers have service contracts with the Original Equipment Manufacturer (OEM). These service contracts include service level agreements on spare parts supply. The OEM operates a service network to support these logistic contracts. To determine spare parts stock levels the OEM needs to forecast spare parts demand. An important input for this forecast is the service Bill Of Material (BOM) per installed machine in the field, which specifies the applicable spare parts for a machine, and is usually derived from the machine configuration. Because of a growing installed base, increasing machine complexity, and an increasing number of machine variants, companies face a challenge in defining and maintaining machine configurations, which is why the service BOM is not always in line with the actual installed machine. An incorrect service BOM results in either a too low or a too high forecast for spare parts demand, and will result in under- or overstock.

Suggested Citation

  • Stip, J. & Van Houtum, G.J., 2020. "On a method to improve your service BOMs within spare parts management," International Journal of Production Economics, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:proeco:v:221:y:2020:i:c:s0925527319302762
    DOI: 10.1016/j.ijpe.2019.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527319302762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert-Jan van Houtum & Bram Kranenburg, 2015. "Spare Parts Inventory Control under System Availability Constraints," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4899-7609-3, December.
    2. Huiskonen, Janne, 2001. "Maintenance spare parts logistics: Special characteristics and strategic choices," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 125-133, May.
    3. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    4. M N Jalil & R A Zuidwijk & M Fleischmann & Jo A E E van Nunen, 2011. "Spare parts logistics and installed base information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 442-457, March.
    5. Dekker, Rommert & Pinçe, Çerağ & Zuidwijk, Rob & Jalil, Muhammad Naiman, 2013. "On the use of installed base information for spare parts logistics: A review of ideas and industry practice," International Journal of Production Economics, Elsevier, vol. 143(2), pages 536-545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    2. Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
    3. Hekimoğlu, Mustafa & Karlı, Deniz, 2023. "Modeling repair demand in existence of a nonstationary installed base," International Journal of Production Economics, Elsevier, vol. 263(C).
    4. Van der Auweraer, Sarah & Zhu, Sha & Boute, Robert N., 2021. "The value of installed base information for spare part inventory control," International Journal of Production Economics, Elsevier, vol. 239(C).
    5. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    6. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    7. Sgarbossa, Fabio & Peron, Mirco & Lolli, Francesco & Balugani, Elia, 2021. "Conventional or additive manufacturing for spare parts management: An extensive comparison for Poisson demand," International Journal of Production Economics, Elsevier, vol. 233(C).
    8. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    9. F. Tevhide Altekin & Ezgi Aylı & Güvenç Şahin, 2017. "After-sales services network design of a household appliances manufacturer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1056-1067, September.
    10. Amniattalab, Ayda & Frenk, J.B.G. & Hekimoğlu, Mustafa, 2023. "On spare parts demand and the installed base concept: A theoretical approach," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    13. Qin, Xuwei & Shao, Lusheng & Jiang, Zhong-Zhong, 2020. "Contract design for equipment after-sales service with business interruption insurance," European Journal of Operational Research, Elsevier, vol. 284(1), pages 176-187.
    14. Driessen, M.A. & van Houtum, G.J. & Zijm, W.H.M. & Rustenburg, W.D., 2020. "Capacity assignment in repair shops with high material uncertainty," International Journal of Production Economics, Elsevier, vol. 221(C).
    15. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.
    16. Christiane B. Haubitz & Ulrich W. Thonemann, 2021. "How to Change a Running System—Controlling the Transition to Optimized Spare Parts Inventory Policies," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1386-1405, May.
    17. Levner, Eugene & Perlman, Yael & Cheng, T.C.E. & Levner, Ilya, 2011. "A network approach to modeling the multi-echelon spare-part inventory system with backorders and interval-valued demand," International Journal of Production Economics, Elsevier, vol. 132(1), pages 43-51, July.
    18. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    19. Jin, Tongdan & Tian, Yu, 2012. "Optimizing reliability and service parts logistics for a time-varying installed base," European Journal of Operational Research, Elsevier, vol. 218(1), pages 152-162.
    20. Shi, Zhenyang & Liu, Shaoxuan, 2020. "Optimal inventory control and design refresh selection in managing part obsolescence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 133-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:221:y:2020:i:c:s0925527319302762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.