IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i2p451-462.html
   My bibliography  Save this article

An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem

Author

Listed:
  • Russo, Mauro
  • Sforza, Antonio
  • Sterle, Claudio

Abstract

In this paper we tackle the unconstrained non-staged guillotine two-dimensional cutting problem (U2DCP) with rectangular pieces and one rectangular stock sheet. This problem has been widely treated in literature by exact and heuristic solution methods which use the knapsack function introduced by Gilmore and Gomory (1966) and implement more effective variants of their dynamic programming procedure to compute the related recursive expression. We highlight three errors present in the original procedure by Gilmore and Gomory (1966). The first error was noted by Herz (1972) but no correction was provided. The other two errors have never been noted before. These errors affect the accuracy of the solution and cause the increase of the computational requirements. Corrections for these errors are presented and an improved computational procedure is proposed. The new procedure has been tested on a wide set of instances (PackLib2) and compared with the best exact and heuristic methods present in literature. The experimentation shows that the procedure significantly outperforms the best dynamic programming algorithm proposed for the U2DCP and it compares well with the best heuristic and the best exact algorithm for the problem.

Suggested Citation

  • Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:451-462
    DOI: 10.1016/j.ijpe.2013.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313001953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Cheng, C. H. & Feiring, B. R. & Cheng, T. C. E., 1994. "The cutting stock problem -- a survey," International Journal of Production Economics, Elsevier, vol. 36(3), pages 291-305, October.
    3. E G Birgin & R D Lobato & R Morabito, 2012. "Generating unconstrained two-dimensional non-guillotine cutting patterns by a Recursive Partitioning Algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 183-200, February.
    4. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    5. Y-G G & M-K Kang, 2002. "A new upper bound for unconstrained two-dimensional cutting and packing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 587-591, May.
    6. Yaodong Cui, 2013. "A new dynamic programming procedure for three-staged cutting patterns," Journal of Global Optimization, Springer, vol. 55(2), pages 349-357, February.
    7. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    8. Hifi, M. & Zissimopoulos, V., 1996. "A recursive exact algorithm for weighted two-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 91(3), pages 553-564, June.
    9. P. C. Gilmore & R. E. Gomory, 1966. "The Theory and Computation of Knapsack Functions," Operations Research, INFORMS, vol. 14(6), pages 1045-1074, December.
    10. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    11. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    12. Hifi, Mhand, 1997. "The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 41-52, February.
    13. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    14. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    15. K. V. Viswanathan & A. Bagchi, 1993. "Best-First Search Methods for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 41(4), pages 768-776, August.
    16. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    17. Morabito, R. N. & Arenales, M. N. & Arcaro, V. F., 1992. "An and--or-graph approach for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 263-271, April.
    18. Fekete, Sandor P. & van der Veen, Jan C., 2007. "PackLib2: An integrated library of multi-dimensional packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1131-1135, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco A. Boschetti & Vittorio Maniezzo & Francesco Strappaveccia, 2016. "Using GPU Computing for Solving the Two-Dimensional Guillotine Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 540-552, August.
    2. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    4. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    5. Wei, Lijun & Lim, Andrew, 2015. "A bidirectional building approach for the 2D constrained guillotine knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 63-71.
    6. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    7. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    8. de Armas, Jesica & Miranda, Gara & León, Coromoto, 2012. "Improving the efficiency of a best-first bottom-up approach for the Constrained 2D Cutting Problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 201-213.
    9. Velasco, André Soares & Uchoa, Eduardo, 2019. "Improved state space relaxation for constrained two-dimensional guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 106-120.
    10. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    11. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    12. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
    13. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    14. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    15. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    16. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    17. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    18. Jianyu Long & Zhong Zheng & Xiaoqiang Gao & Panos M. Pardalos & Wanzhe Hu, 2020. "An effective heuristic based on column generation for the two-dimensional three-stage steel plate cutting problem," Annals of Operations Research, Springer, vol. 289(2), pages 291-311, June.
    19. Jéssica Gabriela Almeida Cunha & Vinícius Loti de Lima & Thiago Alves Queiroz, 2020. "Grids for cutting and packing problems: a study in the 2D knapsack problem," 4OR, Springer, vol. 18(3), pages 293-339, September.
    20. Celia Glass & Jeroen Oostrum, 2010. "Bun splitting: a practical cutting stock problem," Annals of Operations Research, Springer, vol. 179(1), pages 15-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:451-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.