IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i2p727-741.html
   My bibliography  Save this article

Queue-constrained packing: A vehicle ferry case study

Author

Listed:
  • Bayliss, Christopher
  • Currie, Christine S.M.
  • Bennell, Julia A.
  • Martinez-Sykora, Antonio

Abstract

We consider the problem of loading vehicles onto a ferry. The order in which vehicles arrive at the terminal can have a significant impact on the efficiency of the packing on the ferry as it may not be possible to place a vehicle in an optimal location if it is not at the front of one of the dockside queues at the right point in the loading process. As the arrival order of vehicles is stochastic, we model the loading process as a two-stage stochastic optimization problem where the objective is to reduce penalties incurred by failing to pack booked vehicles. The first stage consists of optimizing the yard policy for allocating vehicles to dockside queues while the second stage solves the packing problem for a realisation of the arrival process using the yard policy determined in stage one. A novel stage-wise iterative metaheuristic is introduced, which alternates between packing optimization for each of a training set of scenarios whilst fixing the yard policy and optimizing the yard policy whilst fixing the packing solutions. We introduce two novel packing encoders for the second stage packing problem. Termed Sequential Block Packing Encode (SOPE) and General Packing Encoder (GPE), the arrangements they produce are designed to be efficient and easy to implement for loading staff. Results show that the number of yard queues available is critical to the efficiency of the packing on board the ferry.

Suggested Citation

  • Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2021. "Queue-constrained packing: A vehicle ferry case study," European Journal of Operational Research, Elsevier, vol. 289(2), pages 727-741.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:727-741
    DOI: 10.1016/j.ejor.2020.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172030638X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Y-G G & M-K Kang, 2002. "A new upper bound for unconstrained two-dimensional cutting and packing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 587-591, May.
    4. Bayliss, Christopher & Currie, Christine S.M. & Bennell, Julia A. & Martinez-Sykora, Antonio, 2019. "Dynamic pricing for vehicle ferries: Using packing and simulation to optimize revenues," European Journal of Operational Research, Elsevier, vol. 273(1), pages 288-304.
    5. M Mrad & I Meftahi & M Haouari, 2013. "A branch-and-price algorithm for the two-stage guillotine cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 629-637, May.
    6. R Alvarez-Valdes & F Parreño & J M Tamarit, 2005. "A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 414-425, April.
    7. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    8. Andrea Lodi & Silvano Martello & Daniele Vigo, 1999. "Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 345-357, November.
    9. Sándor P. Fekete & Jörg Schepers, 2004. "A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 60(2), pages 311-329, October.
    10. Manuel Iori & Juan-José Salazar-González & Daniele Vigo, 2007. "An Exact Approach for the Vehicle Routing Problem with Two-Dimensional Loading Constraints," Transportation Science, INFORMS, vol. 41(2), pages 253-264, May.
    11. Gonçalves, José Fernando & Resende, Mauricio G.C., 2013. "A biased random key genetic algorithm for 2D and 3D bin packing problems," International Journal of Production Economics, Elsevier, vol. 145(2), pages 500-510.
    12. Abdelghani Bekrar & Imed Kacem, 2009. "An Exact Method for the 2D Guillotine Strip Packing Problem," Advances in Operations Research, Hindawi, vol. 2009, pages 1-20, July.
    13. Jason D. Papastavrou & Srikanth Rajagopalan & Anton J. Kleywegt, 1996. "The Dynamic and Stochastic Knapsack Problem with Deadlines," Management Science, INFORMS, vol. 42(12), pages 1706-1718, December.
    14. Hamsa Balakrishnan & Bala G. Chandran, 2010. "Algorithms for Scheduling Runway Operations Under Constrained Position Shifting," Operations Research, INFORMS, vol. 58(6), pages 1650-1665, December.
    15. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    16. Khanafer, Ali & Clautiaux, François & Talbi, El-Ghazali, 2010. "New lower bounds for bin packing problems with conflicts," European Journal of Operational Research, Elsevier, vol. 206(2), pages 281-288, October.
    17. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    18. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    19. Kang, Jangha & Park, Sungsoo, 2003. "Algorithms for the variable sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 147(2), pages 365-372, June.
    20. Brian C. Dean & Michel X. Goemans & Jan Vondrák, 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 945-964, November.
    21. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    22. Silvano Martello & Daniele Vigo, 1998. "Exact Solution of the Two-Dimensional Finite Bin Packing Problem," Management Science, INFORMS, vol. 44(3), pages 388-399, March.
    23. Morabito, Reinaldo & Arenales, Marcos N., 1996. "Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 548-560, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Beizhen & Tierney, Kevin & Reinhardt, Line Blander & Pahl, Julia, 2022. "Optimal dual cycling operations in roll-on roll-off terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Patrizia Ghisellini & Amos Ncube & Gianni D’Ambrosio & Renato Passaro & Sergio Ulgiati, 2021. "Potential Energy Savings from Circular Economy Scenarios Based on Construction and Agri-Food Waste in Italy," Energies, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Nestor M Cid-Garcia & Yasmin A Rios-Solis, 2020. "Positions and covering: A two-stage methodology to obtain optimal solutions for the 2d-bin packing problem," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-22, April.
    3. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    4. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.
    5. Khanafer, Ali & Clautiaux, François & Talbi, El-Ghazali, 2010. "New lower bounds for bin packing problems with conflicts," European Journal of Operational Research, Elsevier, vol. 206(2), pages 281-288, October.
    6. Qi Zhang & Shixin Liu & Ruiyou Zhang & Shujin Qin, 2021. "Column generation algorithms for mother plate design in steel plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 127-153, March.
    7. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    8. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    9. Selma Khebbache-Hadji & Christian Prins & Alice Yalaoui & Mohamed Reghioui, 2013. "Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 307-336, March.
    10. Polyakovsky, Sergey & M'Hallah, Rym, 2009. "An agent-based approach to the two-dimensional guillotine bin packing problem," European Journal of Operational Research, Elsevier, vol. 192(3), pages 767-781, February.
    11. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    12. Li, Xueping & Zhang, Kaike, 2018. "Single batch processing machine scheduling with two-dimensional bin packing constraints," International Journal of Production Economics, Elsevier, vol. 196(C), pages 113-121.
    13. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    14. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    15. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    16. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    17. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    18. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    19. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    20. Michele Monaci & Paolo Toth, 2006. "A Set-Covering-Based Heuristic Approach for Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 71-85, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:727-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.